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MODELING PHARMACODYNAMICS ON HIV LATENT
INFECTION: CHOICE OF DRUGS IS KEY TO SUCCESSFUL CURE

VIA EARLY THERAPY∗

NAVEEN K. VAIDYA† AND LIBIN RONG‡

Abstract. Highly active antiretroviral therapy has successfully controlled HIV replication in
many patients. The treatment effectiveness may depend on the pharmacodynamics of antiretroviral
drugs. In this paper, we integrate several drug-related parameters into an HIV infection model
to investigate the effects of drug pharmacodynamics on the HIV latent reservoir and viral load
dynamics. We showed that pharmacodynamic characteristics of drugs and the dosing schedule can
significantly affect the outcome of either early or late treatment. Variations in each of the four
studied parameters (the slope of the dose-response curve, the ratio of the maximum dosage to the
50% inhibitory concentration, the drug’s half-life, and the dosing interval) can generate either an
infection-free steady state or persistent infection when the other parameters remain unchanged.
The global stability of the infection-free steady state and the viral persistence are shown to be
governed by a viral invasion threshold that depends on the drug pharmacodynamics. Our results
highlight that success of treatment, particularly pre-exposure prophylaxis or early treatment, may
be determined by the choice of antiretroviral drugs in the treatment regimen; prophylaxis or very
early treatment using drugs with a good pharmacodynamic profile has the potential to prevent or
postpone the establishment of viral infection. In patients with established latent reservoir, late
treatment can suppress the viral load to an undetectable level but cannot eradicate the virus. In this
scenario, pharmacodynamic parameters and the dosing schedule can moderately change the viral load
dynamics. However, the latent reservoir is hardly affected by them because it can be maintained
by homeostasis of latently infected cells or other mechanisms rather than ongoing residual viral
replication. These results support that drug pharmacodynamics need to be considered in studying
HIV dynamics and in developing antiretroviral therapy against HIV infection.

Key words. HIV latent reservoir, periodic system, pharmacodynamics, reproductive number,
time-varying drug effectiveness, viral invasion threshold
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1. Introduction. Human immunodeficiency virus (HIV) continues to be one of
the biggest burdens in human health with about 37 million people living with the
virus around the world and approximately 1.1 million deaths due to AIDS-related
illness [49]. While there has been remarkable advancement in the development of
antiretroviral therapy (ART) and prevention strategies, currently there is no cure for
HIV. Therefore, the study towards the search for eradication of HIV is becoming
increasingly important.

HIV infection establishes viral reservoirs in the form of cells or tissues that restrict
virus replication and preserve replication-competent HIV for long periods of time [4].
Of these reservoirs, the latent proviral reservoir within resting CD4+ memory T cells
constitutes the most challenging obstacle to viral eradication; currently available ART
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drugs are unable to affect latently infected cells. Such latently infected T-cells allow
viral persistence despite immune surveillance or ART. These latent cells provide a
continuous source of viremia following their activation by antigens [12]. Thus, a
proper strategy for controlling latently infected cells is urgently needed.

Latent T-cell infection is established during early HIV infection [11, 28]. A study
[3] on HIV patients treated early in infection showed that latently infected cells are
mainly generated during primary infection from initiation of infection up to the time
of ART, and once ART is initiated, there are many fewer infections generating fewer
latently infected cells. This encouraging result suggests that the initiation of ART
very early during infection can limit or possibly eradicate the virus, as supported by
some successes of pre-exposure and post-exposure prophylaxis on avoiding infection
[6, 13, 14, 18, 21, 36]. However, an experiment with simian immunodeficiency virus
infected monkeys [48] showed that even the monkeys that were treated on day 3
postinfection suffer from virus rebound after discontinuation of ART following 24
weeks of fully suppressive therapy. Moreover, the accurate timing for establishment
of a latent reservoir in humans is more uncertain [1]. Benefits of early therapy in
controlling latently infected cells are not fully understood.

There are five major classes of HIV antiretroviral drugs [37, 38]: nucleoside re-
verse transcriptase inhibitors (NRTI), nonnucleoside reverse transcriptase inhibitors
(NNRTI), protease inhibitors (PI), fusion inhibitors (FI), and integrase inhibitors (II).
The absolute efficacy of these drugs in vivo has not been determined for the majority
of drug regimes, and the efficacy can be as low as 68% for some combination therapies
[24]. Such suboptimal treatment may result in viral rebound [19, 22, 38, 47], thereby
providing an opportunity to establish latently infected cells even during treatment
early in infection. Antiviral activity of treatment is mainly attributable to the phar-
macodynamic properties of the drugs such as ED50 (drug concentration causing 50%
inhibition) and the slope of the dose-response curve (the measure of how inhibition
increases as a function of increasing drug concentration) [37, 38]. Moreover, the drug
concentration in plasma varies widely and changes over time depending upon the
drug’s half-life, amount of drug intake, and adherence. Hence, the pharmacodynam-
ics of drugs must be taken into account while designing treatment protocols that aim
to mitigate HIV latent infection.

Many mathematical models have provided great insights into the dynamics of
latently infected cells [3, 20, 33, 35]. However, there are very limited studies on virus
and latent reservoir dynamics modeling with ART pharmacodynamics. In this study,
we develop a mathematical model that incorporates a detailed pharmacodynamics
of drugs to study effects of ART, particularly early ART, on controlling latently in-
fected cells. We consider a realistic periodic drug intake scenario to obtain a periodic
model system, and fully analyze the model to establish the local as well as the global
properties of the infection dynamics. The invasion threshold, derived based on our
model, is used to study the role of pharmacodynamic properties in eradicating viral
infection. In addition, we present the latent infection dynamics influenced by the
pharmacodynamic properties of drugs. Our study highlights that the pharmacody-
namic properties, and thus the choice of drug combination, could be a determinant
factor for successful eradication of HIV using early treatment strategy.

2. Model.

2.1. PLHI Model. We derive a pharmacodynamic latent HIV infection (PLHI)
model by incorporating time-varying efficacy of ART into a latent viral dynamics
model [29, 33]. A schematic diagram of the model is shown in Figure 1. As in
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Fig. 1. Schematic diagram of PLHI model.

the previous models [29, 33], we consider three mutually exclusive compartments:
uninfected target cells (T ), productively infected cells (I), and latently infected cells
(L). We further consider a compartment V that measures the concentration of free
virus. We describe the infection dynamics using the following differential equations:

dT

dt
= λ− dT − Ωi(t)βV T, T (0) = T0,(1)

dI

dt
= (1− f)Ωi(t)βV T + aL− δI, I(0) = I0,(2)

dL

dt
= fΩi(t)βV T − aL− δLL, L(0) = L0,(3)

dV

dt
= Ωp(t)pI − cV, V (0) = V0.(4)

The target cells, T , die at rate d and are recruited into the infection cite at rate λ.
Target cells become infected at a rate proportional to the product of target cell density
and virus concentration with a rate constant β. We assume that a fraction, f , of
infection generates latently infected cells with replication competent genomes and the
remaining fraction of infection, (1− f), leads to productively infected cells. Latently
infected cells become productively infected at rate a due to activation. Productively
infected cells produce new viruses at rate p per cell. Productively infected cells and
latently infected cells die at rates δ and δL, respectively, while free viruses get cleared
at rate c. The parameter values of the model used in this study are given in Table 1.

Currently available five classes of ART, FIs, NRTIs, NNRTIs, IIs, and PIs [37, 38],
show their antiviral activity by reducing either the infection rate β to the rate Ωi(t)β
or the viral production rate p to the rate Ωp(t)p. Here, Ωi(t) and Ωp(t) are time-
varying residual viral infectivity and viral production, respectively, during ART. Note
that effectiveness of the drugs are given by εi(t) = 1− Ωi(t) and εp(t) = 1− Ωp(t).

2.2. Pharmacodynamic effects. Based on a classical dose-response relation-
ship [7, 8, 37, 38], we formulate the residual viral infectivity, Ωi(t), and the residual
viral production, Ωp(t), during ART as follows:

Ωi(t) =
1

1 + [Di(t)/EDi
50]mi

,

Ωp(t) =
1

1 + [Dp(t)/ED
p
50]mp

,(5)

D
ow

nl
oa

de
d 

10
/2

3/
17

 to
 1

46
.2

44
.1

3.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1784 NAVEEN K. VAIDYA AND LIBIN RONG

Table 1
Model parameters.

Parameter Description Estimate Source

λ Recruitment rate of uninfected cells 10000 [41]
cells ml−1 day−1

d Death rate of uninfected cells 0.01 day−1 [26, 41]
β Infection rate 2× 10−8 [32]

ml day−1

δ Death rate of productively infected cells 1 day−1 [25]
f Fraction of infection events generating 0.001 [35]

latent infection
a Activation rate of latently infected cells 0.2 day−1 [33]
δL Death rate of latently infected cells 0.0039 day−1 [31, 50]
p Virion production rate 4000 day−1 [33]
c Virion clearance rate 23 day−1 [30]
EDi

50, ED
p
50 Drug concentration for 50% efficacy varied

mi,mp Hill’s coefficients varied
ki, kp Decay slope of the drug concentration varied
Di

max, D
p
max Maximum drug concentration varied

∆t Drug intake interval varied

where mi, mp are Hill’s coefficients, and EDi
50 and EDp

50 are the plasma concentra-
tions of drugs required to obtain 50% of the maximal effect. Time-varying plasma
concentrations of drugs, Di(t) and Dp(t), are given by

Di(t) = Di
maxe

−ki(t−tj),

Dp(t) = Dp
maxe

−kp(t−tj),

tj ≤ t < tj+1, j = 0, 1, 2, . . . ,(6)

where ∆t = tj+1 − tj represents drug intake interval, ki, kp are decay slopes of the
drug concentrations, and Di

max, D
p
max are maximum drug concentrations reached in

the plasma following the drug intake. For simplicity, we assume the same Di
max, D

p
max

value after each drug intake, and consider the smooth spline functional curve account-
ing for impulses at dosing times followed by exponential decay (6). Therefore, the
time-varying parameters Ωi(t),Ωp(t) introduced into the model become smooth peri-
odic functions of a period τ , i.e., Ωi(t) = Ωi(t + τ), Ωp(t) = Ωp(t + τ), respectively.
While the phase difference between drugs in a combination therapy can have impact
as shown in previous modeling studies [5, 45], in today’s practice most of the combined
drugs are given at the same time [27]. Also, a single pill with multiple drugs has been
developed and is widely used [27]. For this reason, we assume that all drugs combined
are taken in the same interval of τ but this can be extended to a general case. In
this periodic function, amplitude can be used to study the combined effect of maxi-
mum drug concentration reached in the plasma and the slope m, while the period can
be used to study the average measure of drug intake intervals, including the average
missed doses. For computational purposes, we consider the values of pharmacodynam-
ics parameters from the experimentally estimated range that includes all five classes of
HIV drugs [38]. While we vary parameters to study the effects of pharmacodynamics,
we use Tenofovir, one of the drugs used in Truvada for pre-exposure prophylaxis, as
our base case drug in the simulation. An example of time-varying drug concentration
and time-varying residual viral activity during ART is shown in Figure 2.
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(a) (b) (c)

Fig. 2. (a) Time-varying drug concentration; (b) residual viral activity during ART versus
ART concentration; and (c) time-varying residual viral activity during ART. The pharmacodynamic
parameters used were Dmax/ED50 = 20, half-life t1/2 = 4 hours, dosing interval τ = 1 day, and
m = 2.

3. Analytical results. For any (T0, I0, L0, V0) ∈ R4
+, system (1)–(4) has a

unique local nonnegative solution (T (t), I(t), L(t), V (t)) through the initial value
(T (0), I(0), L(0), V (0)) = (T0, I0, L0, V0) [39]. Here, the dynamics of the total CD4+
T cells, N(t) = T (t) + I(t) + L(t), is governed by dN/dt = λ − dN − (δ − d)I −
(δL − d)L ≤ λ − δLN as δL � d � δ. Note that the linear differential equation
dN/dt = λ− δLN has a unique equilibrium N∗ = λ/δL, which is globally asymptoti-
cally stable. Then by the comparison principle [39], we obtain that N(t) is ultimately
bounded, and so are T (t), I(t), and L(t). Also, since Ωp(t) ≤ 1 and I(t) ≤ N(t), we
get dV/dt = Ωp(t)pI − cV ≤ pN − cV . Again, dV/dt = pN − cV provides a limit-
ing system dV/dt = pλ/δL − cV , which has a globally asymptotically stable unique
equilibrium V ∗ = pλ/(δLc). Then, by the comparison principle [40], V (t) is also ul-
timately bounded. Hence, the solutions of the system (1)–(4) exist globally on the
interval [0,∞). In summary, we have the following result.

Theorem 3.1. System (1)–(4) has a unique and bounded solution with the initial
value (T0, I0, L0, V0) ∈ R4

+. Furthermore, for any q > 0, there exists tq > 0 such that
the solution of system (1)–(4) with t ≥ tq lies in the compact set

D+q = {(T, I, L, V ) ∈ R4
+ : N ≤ λ/δL + q, V ≤ pλ/(δLc) + q}.

3.1. The basic reproductive number. The basic reproductive number, R0,
is defined as the average number of virus particles generated by a single virus particle
introduced into a site with completely uninfected target cells. For a situation in
which drug concentration can be maintained constant over time, R0 is a key threshold
parameter that indicates—in the deterministic limit—if an infection is avoided or an
infection occurs, depending upon whether its value exceeds one [2]. Using the next
generation matrix approach [16, 44], we can derive the basic reproductive number
for the PLHI model with constant residual viral activities Ω̄i, Ω̄p. The model system
(1)–(4) has exactly one disease-free equilibrium X0 = (λ/d, 0, 0, 0), and equations for
the infected cell and virus compartments of the linearized system at X0 take the form

dI

dt
= −δI + aL+

Ω̄i(1− f)βλ
d

V,(7)

dL

dt
= −(a+ δL)L+

Ω̄ifβλ
d

V,(8)

dV

dt
= Ω̄ppI − cV.(9)
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We introduce the following matrices,

F =

 0 0 Ω̄i(1−f)βλ
d

0 0 Ω̄ifβλ
d

0 0 0

 , V =

 δ −a 0
0 a+ δL 0
−Ω̄pp 0 c

 .

These expressions give

FV−1 =


Ω̄iΩ̄p(1−f)βλp

dδc
Ω̄iΩ̄p(1−f)βλpa
dδc(a+δL) 0

Ω̄iΩ̄pfβλp
dδc

Ω̄iΩ̄pfβλpa
dδc(a+δL) 0

0 0 0

 .

Then R0 corresponds to the spectral radius of FV−1:

R0 = ρ(FV−1) =
Ω̄iΩ̄pβλp
dδc

[
1− f +

fa

a+ δL

]
.

With the base-case parameters given in Table 1, in the absence of drugs, i.e.,
Ω̄iΩ̄p = 1, the basic reproductive number is R0 = 3.5. This shows that to avoid
infection the combination drug efficacy ε̄ = 1 − Ω̄iΩ̄p should be maintained at a
constant greater than 1 − 1/R0 = 0.71, i.e., maintaining constant drug effectiveness
of at least 71% should theoretically avoid infection. However, it is unlikely that the
constant drug efficacy is maintained due to the time-varying nature of the plasma
drug concentration and pharmacodynamic properties. Notice that in the presence of
drugs, R0 is usually called the (on-treatment) reproductive number. For simplicity
and comparison with other reproductive numbers discussed later, we still refer to it
as the basic reproductive number.

3.2. The effective reproductive number. While R0 calculated above is use-
ful to identify drug effectiveness that ensures that the virus does not grow at the
beginning of the infection, the viral growth later during the infection may not be
avoided because of the plasma drug concentration variations. To study the effect
of plasma concentration over the time postinfection, a more relevant measure is the
effective reproductive number, Re(t). Re(t) measures the average number of virus
particles resulting from a single virus particle introduced at time t into the infection
cite, given the uninfected target cell level at that time [9, 17]. For our model, Re(t)
is given by

Re(t) = Ωi(t)Ωp(t)T (t)
βp

δc

[
1− f +

fa

a+ δL

]
.

To study the effects of pharmacodynamic parameters on the effective reproduc-
tive number, we plotted Re(t) with different parameters. For the ease of illustra-
tion, we used the combination drug efficacy ε(t) = 1 − Ωi(t)Ωp(t) = 1 − (1 − εi(t))
× (1− εp(t)), which reduces the viral infection [34]. For the combination therapy, m
is the corresponding slope of the dose-response curve, Dmax is the maximum dosage,
k is the decay rate of drug concentration, and τ is the dosing interval. Figure 3 shows
the simulated Re(t) with different slopes of the dose-response curve: (a) m = 0.5 and
(b) m = 3. Figure 4 shows the simulated Re(t) with different ratios of the maximum
dosage to the 50% inhibitory concentration ED50: (a) n = Dmax/ED50 = 10 and
(b) n = 30. In each figure, (c) and (d) are the same as (a) and (b), respectively,
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Fig. 3. The effective reproductive number Re(t) with different slopes of the dose-response curve:
(a) m = 0.5 and (b) m = 3. (c) and (d) are the same as (a) and (b), respectively, but plotted over
a longer period of time. The averages of the effective reproductive number are (c) R̄e = 1.0011 and
(d) R̄e = 0.9296, which are plotted using black horizontal lines. The parameters ED50 = 168.4 nm,
n = 20, half-life t1/2 = 4 hours, dosing interval τ = 1 day were fixed. The other parameters were
listed in Table 1.

but show the simulation over a longer time period so that the average of the effective
reproductive number can be calculated (horizontal lines in (c) and (d)). Because of
the decay of drug after each dose, the effective reproductive number undergoes exten-
sive oscillations. In general, the amplitude of the oscillation increases as the slope of
the dose-response curve increases or the ratio Dmax/ED50 decreases. We will show
the dynamics of the latent reservoir and viral load for each case later. The average
of the effective reproductive number will be compared with the basic reproductive
number calculated from the average of drug efficacy, and will also be evaluated to
determine if it can predict the long-term dynamical behavior of the system.

3.3. Viral invasion threshold. Despite being a useful indicator for both the
severity of an infection and the effort required to control the infection, one of the
weaknesses of Re(t) is that this number is not a threshold parameter for viral invasion
[46]. We now derive a viral invasion threshold under ART, Ri, using an approach
similar to those in Wang and Zhao [46], Liu, Zhao, and Zhou [23], and Vaidya and
Wahl [43].

For our τ -periodic PLHI model system, i.e., Ωi(t) = Ωi(t+ τ),Ωp(t) = Ωp(t+ τ),
equations for the infected cells and virus compartments of the linearized system at
the infection-free equilibrium, X0, take the form

dI

dt
= −δI + aL+

Ωi(t)(1− f)βλ
d

V,(10)
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Fig. 4. The effective reproductive number Re(t) using different ratios of the maximum dosage
to ED50: (a) n = Dmax/ED50 = 10 and (b) n = 30. (c) and (d) are the same as (a) and (b),
respectively, but plotted over 500 days. The averages of the effective reproductive number are (c)
R̄e = 1.0272 and (d) R̄e = 0.6809, which are plotted using black horizontal lines. The slope of the
dose-response curve was fixed at m = 2 and the other parameters are the same as those in Figure 3.

dL

dt
= −(a+ δL)L+

Ωi(t)fβλ
d

V,(11)

dV

dt
= Ωp(t)pI − cV.(12)

We consider

Fτ =

 0 0 Ωi(t)(1−f)βλ
d

0 0 Ωi(t)fβλ
d

0 0 0

 , Vτ (t) =

 δ −a 0
0 a+ δL 0

−Ωp(t)p 0 c

 .

We assume that Y (t, s), t ≥ s, is the evolution operator of the linear τ -periodic
system

(13)
dy

dt
= −Vτ (t)y.

That is, for each s ∈ R, the 3×3 matrix Y (t, s) satisfies

d

dt
Y (t, s) = −Vτ (t)Y (t, s) ∀t ≥ s, Y (s, s) = I,

where I is the 3×3 identity matrix. Then the monodromy matrix, Φ−Vτ (t) of (13), is
equal to Y (t, 0), t ≥ 0.

Let ϕ(s) be the initial distribution of virus particles. Then Fτϕ(s) is the rate
of new infected cells produced by the virus particles which were introduced at time
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EFFECT OF PHARMACODYNAMICS ON HIV LATENT INFECTION 1789

s. Given t ≥ s, Y (t, s)Fτϕ(s) provides the distribution of those virus particles which
were newly produced by infected cells at time s and remain in the virus compartment
at time t.

Let Cτ be the ordered Banach space of all τ -periodic functions from R to R3 with
the maximum norm || · || and the positive cone C+

τ := {ϕ ∈ Cτ : ϕ(t) ≥ 0,∀t ∈ R}.
We now define a linear operator L : Cτ → Cτ by

(Lϕ)(t) =
∫ ∞

0
Y (t, t− ξ)Fτϕ(t− ξ)dξ ∀t ∈ R, ϕ ∈ Cτ .

Here,
∫∞

0 Y (t, t − ξ)Fτϕ(t − ξ)dξ =
∫ t
−∞ Y (t, s)Fτϕ(s)ds gives the distribution of

accumulative new viruses at time t produced due to all those viruses ϕ(s) at times
before time t. Therefore, L is the next infection operator [43, 46], and we define a
viral invasion threshold as Ri = ρ(L), the spectral radius of L.

As in Wang and Zhao [46] and Liu, Zhao and Zhou [23], we let T (t, ϑ) be the
monodromy matrix of the linear τ -periodic system

dτ

dt
=
(
−Vτ (t) +

1
ϑ
Fτ
)
τ, t ∈ R,

with parameter ϑ ∈ (0,∞). Since Fτ is nonnegative and −Vτ (t) is cooperative, it
follows that limϑ→∞ ρ(T (τ, ϑ)) < 1 and ρ(T (τ, ϑ)) is continuous and nonincreasing
in ϑ ∈ (0,∞). Thus, as proved in Wang and Zhao [46], we have the following two
results.

Lemma 3.2. The following statements hold [46].
(i) If ρ(T (τ, ϑ)) = 1 has a positive solution ϑ0, then ϑ0 is an eigenvalue of

operator L, and hence Ri > 0.
(ii) If Ri > 0, then ϑ = Ri is the unique solution of ρ(T (τ, ϑ)) = 1.
(iii) Ri = 0 if and only if ρ(T (τ, ϑ)) < 1 for all ϑ > 0.

Lemma 3.3 (see [46]). The infection-free equilibrium X0 is locally asymptotically
stable if Ri < 1, and unstable if Ri > 1.

3.4. Global dynamics: Viral persistence. By deriving a condition for the
global stability of X0 in the following theorem, we establish the condition for global
eradication of the virus from the body.

Theorem 3.4. If Ri < 1, then the unique infection-free equilibrium,

X0 = (λ/d, 0, 0, 0),

is globally asymptotically stable.

Proof. See Appendix A for the proof.

We can also prove that Ri > 1 provides a condition for the long-term HIV per-
sistence in the body with at least one positive periodic solution. We state the result
in the following theorem.

Theorem 3.5. If Ri > 1, then there exists a value ξ > 0 such that any solution
(T (t), I(t), L(t), V (t)) of the system (1)–(4) with the initial value (T0, I0, L0, V0) ∈
D0 = {(T, I, L, V ) ∈ R4

+ : I > 0, L > 0, V > 0} satisfies.

lim inf
t→+∞

I(t) ≥ ξ, lim inf
t→+∞

L(t) ≥ ξ, and lim inf
t→+∞

V (t) ≥ ξ,

and the system (1)–(4) admits at least one positive periodic solution.
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1790 NAVEEN K. VAIDYA AND LIBIN RONG

(a) (b)

(c) (d)

Fig. 5. The viral invasion threshold, Ri, as a function of (a) the slope of dose-response curve,
m, (b) the half-life of drugs, t1/2, (c) the ratio of the maximum doses to the 50% inhibitory con-
centration, Dmax/ED50, and (d) the dosing interval, τ . In each case, remaining pharmacodynamic
parameters were fixed at their base value, i.e., Dmax/ED50 = 20, half-life t1/2 = 4 hours, dosing
interval τ = 1 day, and m = 2. The other viral dynamic parameters are listed in Table 1.

Proof. See Appendix B for the proof.

According to Lemma 3.2, Ri can be obtained by solving ρ(T (τ, ϑ)) = 1 for ϑ.
Using this technique, we computed Ri numerically to study how Ri depends on the
pharmacodynamic parameters m, k, Dmax/ED50, and τ (Figure 5). Each of these
pharmacodynamic parameters can affect Ri making it less than or greater than 1,
thereby causing infection to die out or to persist. Drugs with a larger slope of the
dose-response curve and a larger half-life are able to avoid the infection (Ri < 1,
Figures 5 (a), (b)). For example, in this particular simulation (Figures 5 (a), (b)), a
slope of the dose-response curve greater than 1.2 and a half-life larger than 4 hours
can bring Ri below one. Moreover, to avoid infection (i.e., for Ri < 1), the ratio of
the maximum dose to ED50 needs to be high enough (for example, Dmax needs to
be at least 20 times higher than ED50 in our calculation; Figure 5 (c)), and the drug
dosing interval cannot be too long (Figure 5 (d)). Therefore, missing doses can affect
the success of treatment programs.

4. Effects of pharmacodynamics on HIV latent reservoir and virus dy-
namics: Model predictions.

4.1. Pre-exposure prophylaxis or early treatment. In this section, we used
the PLHI model (1)–(4) to evaluate the influence of drug-related parameters and early
treatment on the dynamics of latent reservoir and viral load. Treatment was assumed
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Fig. 6. Effects of early treatment and pharmacodynamic parameters on the latent reservoir
(first and third column) and viral load (second and forth column). ((a), (b)) Treatment is assumed
to be given at the time of infection, i.e., t = 0 (blue dashed line for m = 0.5 and red solid line for
m = 1) or given one week after infection, i.e., t = 7 days (green dotted line for m = 1); ((c), (d))
treatment is given at t = 0 (blue dashed line for n = Dmax/ED50 = 10 and red solid line for n = 15)
or t = 7 days (green dotted line for n = 15); ((e), (f)) treatment is given at t = 0 (blue dashed line
for the half-life t1/2 = 3 hours and red solid line for t1/2 = 5 hours) or t = 7 days (green dotted
line for t1/2 = 5 hours). The parameter n = Dmax/ED50 is fixed to be 10; ((g), (h)) treatment is
given at t = 0 (blue dashed line for the dosing interval τ = 20 hours and red solid line for τ = 40
hours) or t = 7 days (green dotted line for τ = 20 hours). The parameter n is also fixed to be 10
in (g), (h). All the other parameters are the same as those in Figure 3. Note that any combination
of parameters that makes Ri < 1 avoids viral infection and has no persistent curve on the latent
reservoir and viral load graphs.

to be given at the time of infection or one week after infection. Different values of
pharmacodynamic parameters and the dosing interval were used. We observe that for
any combination of pharmacodynamic parameters that makes Ri < 1, the infection
is avoided and no persistent curve exists in the graphs of latent reservoir and viral
load, consistent with the theoretical results above.

For pharmacodynamic parameters making Ri > 1, the predicted dynamics of the
latent reservoir and the viral load are shown in Figure 6. Using the slope of the dose-
response curve as an example, a larger slope m led to a lower viral peak level and a
longer time to the viral peak, as well as a smaller latent reservoir when treatment is
given at the time of infection (blue dashed versus red solid line in Figures 6(a), (b)).
With the same slope m, earlier treatment significantly postponed the establishment
of the latent reservoir and viral infection (red solid versus green dotted line in Figures
6(a), (b)). Similarly, earlier therapy using drugs with a larger ratio n (Figures 6(c),
(d)), a longer half-life t1/2 (Figures 6(e), (f)) or a shorter dosing interval (Figures
6(g), (h)) was predicted to lower the magnitudes of the viral load and the latent
reservoir size, and prolong the time needed to reach the viral peak during primary
infection. In addition, all the simulations showed that earlier treatment with a better
pharmacodynamic profile is always associated with more substantial suppression of
the viral load and latently infected cells in the early stage of infection.

4.2. Late treatment during chronic infection. In this section, we explored
the effects of pharmacodynamics of antiretroviral drugs on HIV latent reservoir and
the viral load dynamics when the drug is initiated during chronic infection. Here also,
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1792 NAVEEN K. VAIDYA AND LIBIN RONG

Fig. 7. The changes of drug concentration, drug efficacy, latent reservoir, and plasma viral
load with different slopes of the dose-response curve m = 0.5 (blue dashed line) or m = 3 (red solid
line). The averages of the drug efficacy, shown with horizontal lines in (b), are 0.6013 for m = 0.5
and 0.7127 for m = 3. The other parameter values are the same as those in Figure 3.

we investigated the influence of four drug-related parameters. The steady states of
the model before treatment were used as the initial conditions of the model under
treatment during chronic infection. In Figure 7, we plotted the predicted dynamics of
drug concentration, drug efficacy, latent reservoir, and viral load with different slopes
of the dose-response curve m = 0.5 (blue dashed line) or m = 3 (red solid line).
We used the same drug concentration profile for both the slopes considered (Figure
7(a)). A larger slope m results in a higher initial drug efficacy and a slower initial
decline although the drug efficacy declines to a lower level before the next dosage.
The average of the drug efficacy is also higher for a larger slope m (Figure 7(b)).
With m = 0.5, both the latent reservoir and the viral load persist (Figures 7(c),
(d)). However, for a larger slope m = 3, both the latent reservoir and the viral load
are predicted to die out. It is worth noticing that both the latent reservoir and the
viral load experienced very frequent oscillations. The periodic forcing contributes to
these frequent oscillations. It is not obviously seen in a figure over a long time period
(Figures 7(c), (d)).

We are also interested in knowing if the basic reproductive number calculated by
the average of drug efficacy (R0(ε̄), denoted by R̄0) or even if the average effective
reproductive number (R̄e) can provide a reasonable approximation to the viral inva-
sion threshold, Ri, and can determine the long-term viral dynamic behavior. When
m = 0.5, the computed value of Ri is 1.279 while the basic reproductive number using
the average drug efficacy is 1.387 and the average of the effective reproductive number
is R̄e = 1.001. The infection persists in this case. When m increases to 3, we estimate
R̄0 = 0.999, R̄e = 0.930, and Ri = 0.761, and the infection is predicted to die out.
This suggests that for some drugs the values of R̄0 or R̄e may help to determine if
the infection persists or dies out. This is consistent with the observation in an earlier
study of HIV drug resistance using a two-strain model and time-varying drug efficacy
[32]. However, the difference in the magnitudes of R̄0 or R̄e from Ri shows that for
some pharmacodynamic parameters, R̄0 = 1 or R̄e = 1 may not provide a reliable
threshold value for the stability of the infection-free steady state.
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Fig. 8. Predicted dynamics of the model using different ratios of the maximum dosage to ED50,
i.e., n = Dmax/ED50 = 10 (blue dashed line) or n = 30 (red solid line). The averages of the drug
efficacy are 0.5467 for n = 10 and 0.7896 for n = 30. The slope of the dose-response curve was fixed
to m = 2 and the other parameters are the same as those in Figure 3.

In Figure 8, we plotted the dynamics using different ratios of the maximum dosage
to ED50, i.e., n = Dmax/IC50 = 10 (blue dashed line) or n = 30 (red solid line). A
larger ratio n leads to a higher drug efficacy and lower levels of the latent reservoir
and viral load. We also calculated the basic reproductive number using the average
drug efficacy and found that R̄0 = 1.5766 for n = 10 and R̄0 = 0.7318 for n = 30.
The average of the effective reproductive number is R̄e = 1.0272 for n = 10 and
R̄e = 0.6809 for n = 30 (Figure 4). In this case, the value of infection invasion
threshold is Ri = 1.688 for n = 10 and Ri = 0.687 for n = 30 (Figure 5).

We also showed the simulation with other drug-related parameters. For example,
in Figure 9, the changes of drug concentration, efficacy, latent reservoir, and viral
load were shown with different half-lives of antiretroviral drugs. The half-life of drug,
t1/2, was chosen to be 3 hours (blue dashed line) or 9 hours (red solid line). In
Figure 10, we plotted the changes using different dosing intervals of antiretroviral
drugs. The dosing interval τ is 12 hours (blue dashed line) or 36 hours (red solid
line). With t1/2 = 3 hours, the average basic reproductive number is R̄0 = 1.6189
and the infection invasion threshold is Ri = 1.731. The infection is predicted to
be established. When t1/2 = 9 hours, the drug efficacy remains at a high level.
The average basic reproductive number and the infection invasion threshold become
R̄0 = 0.0897 and Ri = 0.130, respectively, and the infection is predicted to die out
(Figure 9). We had similar results when using different dosing intervals (Figure 10).
For a longer dosing interval, for example, τ = 36 hours (red solid line), the infection
persists while for a shorter dosing interval, for example, τ = 12 hours (blue dashed
line in Figure 10), both the latent reservoir and virus are predicted to be eliminated.

From the simulations shown in Figures 7 to 10, we found that the pharmacody-
namic parameters of drugs and the dosing schedule can play an important role in
governing the dynamics of the latent reservoir and viral load. Variations in each of
the four parameters (slope of the dose-response curve, ratio of the maximum dosage
to ED50, drug’s half-life, and dosing interval) can generate either an infection-free
steady state or persistent infection when all the other parameters remain unchanged.
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1794 NAVEEN K. VAIDYA AND LIBIN RONG

Fig. 9. Predicted changes of the drug concentration, efficacy, latent reservoir, and viral load
using different half-lives of antiretroviral drugs. The half-life t1/2 is 3 hours (blue dashed line) or 9
hours (red solid line). The averages of the drug efficacy are 0.5346 for t1/2 = 3 hours and 0.9742 for
t1/2 = 9 hours. The slope of the dose-response curve was fixed at m = 2 and the other parameters
are the same as those in Figure 3.

Fig. 10. Predicted dynamics using different dosing intervals of antiretroviral drugs. The dosing
interval τ is 12 hours (blue dashed line) or 36 hours (red solid line). The averages of the drug efficacy
are 0.9634 for τ = 12 hours and 0.4769 for τ = 36 hours. The slope of the dose-response curve was
fixed to m = 2 and the other parameters are the same as those in Figure 3.

Simulations in Figures 7 to 10 show that a large slope of the dose-response curve,
a large ratio of the maximum dosage to ED50, a long half-life of drugs, or a frequent
dosing schedule possibly clear the HIV latent infection. However, in reality, both the
latent reservoir and the virus haven’t been eliminated in patients despite a prolonged
time of continuous combination ART during chronic infection. Proliferation of latently
infected cells or the existence of drug sanctuaries where antiretroviral drugs have a
poor penetrating ability and thus have minor antiviral activity may be the reason
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for the latent reservoir and viral persistence. Homeostatic proliferation of latently
infected cells was introduced in a mathematical model by Rong and Perelson in [35]
and confirmed by an experimental study by Chomont et al. [10] to explain the stability
of the latent reservoir and low viral load in patients on combination therapy. Here,
using the same model we investigate the influence of drug-related parameters on the
latent reservoir and virus after the viral load is suppressed to below the detection
limit (i.e., 50 RNA copies/ml).

We used the same logistic term as in [35] to describe homeostatic proliferation
of latently infected cells. The L(t) equation (3) in the original model becomes the
following,

(14)
dL

dt
= fΩi(t)βV T + ρmL

(
1− L

Lmax

)
− aL− δLL.

The other equations for T , I, and V are unchanged. In the new equation for L(t), ρm
is the maximum proliferation rate and Lmax is the carrying capacity concentration of
latently infected cells. When the concentration of latently infected cells exceeds Lmax,
homeostatic proliferation shuts off. The model with this equation of latently infected
cells was shown to be robust in generating a stable level of the latent reservoir, as well
as a multiphasic viral load decline in patients receiving combination therapy [35].

Two additional parameters in (14), ρm and Lmax, need to be determined for
numerical simulation. For simplicity, the maximum proliferation rate ρm was chosen to
be the sum of the activation rate, a, and the death rate, δL, of latently infected cells for
the maintenance of the latent reservoir stability. The carrying capacity concentration
of latently infected cells was set to 100 cells/ml according to the calculation in [35].
We also chose the viral production rate to be p = 2000 per day per infected cell in
the simulation of this model in order for the viral load to be suppressed to below the
detection limit after several months of therapy using the other parameters listed in
Table 1.

In Figure 11, we plotted the predicted dynamics of both the latent reservoir and
viral load using different parameters: ((a), (b)) the slope of the dose-response curve
is m = 0.5 or m = 3; ((c), (d)) the ratio of the maximum dosage to ED50 is n = 10
or n = 30; ((e), (f)) the half-life of antiretroviral drugs is t1/2 = 3 hours or 9 hours;
((g), (h)) the dosing interval of antiretroviral drugs is τ = 12 hours or 24 hours. With
different pharmacodynamic parameters or dosing intervals, we found that the viral
load is further lowered for a larger slope m, a larger ratio n, a longer half-life t1/2, or
a shorter dosing interval τ (Figure 11, second and forth columns). However, there is
almost no influence of these parameters on the latent reservoir dynamics (Figure 11,
first and third columns). This is not surprising because with the model including
homeostasis of latency we assumed that the latent reservoir is mainly maintained by
the homeostatic proliferation of latently infected cells rather than other mechanisms
such as ongoing residual viral replication. Thus, once the treatment effectiveness is
above a threshold value guaranteeing successful viral suppression, drug therapy has
a minor effect on the decay of the latent reservoir. In the simulations, ongoing viral
replication still partially contributes to the persistent viremia. Therefore, a more
effective drug (e.g., with a larger slope m, a larger ratio n, a longer half-life t1/2, or
a more frequent dosing schedule) is able to suppress the viral load to a slightly lower
level.

5. Discussion. Despite tremendous success of ART in controlling HIV replica-
tion, currently available anti-HIV drugs cannot cure the infection, mainly because of
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Fig. 11. Dynamics of the latent reservoir (first and third column) and viral load (second and
forth column) using the homeostasis model with different drug-related parameters. ((a), (b)) The
slope of the dose-response curve is m = 0.5 (blue dashed line) or m = 3 (red solid line); ((c), (d))
The ratio of the maximum dosage to ED50, i.e. n = Dmax/ED50 = 10 (blue dashed line) or n = 30
(red solid line); ((e), (f)) The half life of antiretroviral drugs is 3 hours (blue dashed line) or 9 hours
(red solid line); ((g), (h)) The dosing interval of antiretroviral drugs is 12 hours (blue dashed line)
or 24 hours (red solid line). Except in Figure (a, b) in which the slope m of the dose-response curve
varies, the slope was fixed to m = 2 in other figures. In addition, we fixed ρm = a+δL, Lmax = 100
cells/ml, p = 2000 per infected cell per day and all the other parameters are the same as those in
Figure 3.

the establishment of viral reservoirs in the form of latently infected cells. Searching
for the ways to reduce or eradicate the latent reservoir has been one of the major
objectives of current HIV research. In this endeavor, early treatment (before infec-
tion or right after infection) to avoid the formation of such latently infected cells
has recently gained significant attention. However, limited studies have documented
contrasting results on benefits of early treatment in controlling latently infected cells;
some studies with early treatment, including pre-exposure and post-exposure prophy-
laxis, have shown successful avoidance of infection while a recent study [48] on monkey
experiments with treatment beginning at as early as 3 days postinfection showed vi-
ral rebound indicating the failure of early treatment to prevent the latent reservoir
formation. The factors that determine the success of early treatment are poorly un-
derstood, and the pharmacodynamic properties of drugs, a potential explanation for
treatment success, were ignored in previous studies.

The main objective of this study was to develop mathematical models to inves-
tigate effects of pharmacodynamics on the treatment outcomes. Thorough analysis
and simulation of our models, including the periodic system with periodic drug intake,
provided several interesting findings that can be beneficial to develop proper guide-
lines for successful treatment regimens. One of the major contributions of this study
is a formulation of the infection invasion threshold, Ri, that provides a condition for
the global stability of the infection-free equilibrium in the situation of time-varying
drug profile, i.e., the infection is predicted to die out if Ri < 1 (Theorem 3.4) and the
infection persists if Ri > 1 (Theorem 3.5). Most importantly, we determined that the
infection invasion threshold highly depends upon a few pharmacodynamic parameters
(Figure 5) showing that the success of early treatment can be determined by the choice
of drugs used in the treatment regimens. In particular, we found that the drugs with
a larger slope of the dose-response curve, a larger ratio of the maximum drug dose to
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50% inhibitory effect, and/or a higher half-life, can reduce Ri, thereby increasing the
probability of treatment success. Moreover, an increase in the drug-dosing interval
increases Ri. Therefore, only drugs with proper pharmacodynamic properties given
in proper intervals can successfully avoid the infection. It’s worth noting that the
drugs used in the monkey experiments [48] with early treatment failure were NRTI
and II, which have a small slope of the dose-response curve [38], indicating that our
findings about the effects of pharmacodynamics may explain the mechanism for the
treatment failure in that experiment.

Note that the different pharmacodynamic properties can provide quite different
plasma drug concentration profiles (Figures 7–10), and the basic reproductive number,
R0, computed using the average of the periodic drug profile can be quite different
from Ri, highlighting the fact that R0 might not provide a reasonable threshold for
infection persistence for some drugs. Not only do pharmacodynamic parameters of
ART have an important role on achieving Ri < 1 and preventing infection, but also
these parameters significantly affect the viral and latent reservoir dynamics in the case
of Ri > 1 where the infection persists (Figure 6). For example, drugs with a larger
slope of the drug-response curve result in a lower viral peak, a longer time to the viral
peak, and a smaller latent reservoir size. Similar results were observed with the drugs
having a larger ratio of maximum dose to ED50, a longer half-life, and/or given in
a shorter dosing interval. As in the case of pre-exposure prophylaxis, these effects of
pharmacodynamic parameters on suppressing viral load and latently infected cells are
also clearly seen in postinfection early treatment during primary infection. Therefore,
these results suggest that prophylaxis or early treatment using antiretroviral drugs
with good pharmacodynamic profiles has the potential to prevent or postpone the
establishment of the latent reservoir and viral infection.

We also studied how pharmacodynamic properties affect the treatment outcomes
when the treatment is initiated late during chronic infection (Figures 7–11). Impor-
tantly, during chronic infection when latently infected cells are already well estab-
lished, the homeostatic proliferation of these cells becomes a substantial contributor
to the viral dynamics [10, 35]. Therefore, for studying the late treatment outcomes,
we extended our PLHI model to the one that includes homeostatic proliferation of
latently infected cells. While in the absence of homeostatic proliferation the effect
of pharmacodynamics of late treatment are similar to those of the early treatment
(Figures 7–10), the homeostatic proliferation results in a quite different effect of phar-
macodynamic properties on the latent reservoir (Figure 11). The latent reservoir
dynamics remains almost unaffected by the drug pharmacodynamic properties. This
is expected as the latent reservoir is primarily maintained by the process of homeo-
static proliferation that is not affected by currently available drugs. However, because
of a small amount of ongoing viral replication during late treatment, the viral load is
further lowered by drugs with a better pharmacodynamic profile (Figure 11).

We acknowledge a few limitations of this study. Our results are based on the de-
terministic model. As the levels of latent infection and viral load are very low during
treatment, stochastic factors may contribute to the elimination of latently infected
cells and the virus in some patients even though the deterministic model always pre-
dicts the establishment of viral infection. Also, because of the deterministic nature,
the model cannot distinguish asymptotic behavior between pre-exposure prophylaxis
and early treatment as long as they both have the same drug pharmacodynamics
properties even though the distinction is significant in their transient dynamics (Fig-
ures 6(a), (b)). Possible stochastic effects may be studied using stochastic differential
equations [15], but such models may produce additional complications for analysis.
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Since the information about the intracellular drug concentration is not available, we
assumed that the intracellular drug concentration is proportional to the plasma drug
concentration. Our quantitative predictions can be improved when the accurate tem-
poral measure of the intracellular drug concentration becomes available. In some
patients treatment fails because of the emergence of drug resistance. Our models
need to be modified to study effects of pharmacodynamics on the dynamics of sensi-
tive and resistant viral species in those patients. While our theoretical results generate
some interesting ideas for developing treatment protocols, many of these results need
to be supported by in vitro and in vivo experiments before actual recommendations
can be offered in practice.

In conclusion, pharmacodynamics of drugs used in treatment regimens can be a
key factor in avoiding infection as well as controlling viral load and latent reservoir.
For a successful treatment, particularly pre-exposure prophylaxis and early treatment
programs, pharmacodynamic properties must be considered carefully while making
the choice of drugs to include in the treatment program.

Appendix A. Proof of Theorem 3.4. Let Ri < 1. Then Lemma 3.3 implies
that X0 is locally asymptotically stable, i.e., ρ(ΦFτ−Vτ (τ)) < 1. We can choose q0 > 0
small enough giving ρ(ΦFτ−Vτ+Mq0(τ)) < 1, where

Mq0 =

 0 0 Ωi(t)(1− f)βq0
0 0 Ωi(t)fβq0
0 0 0

 .

From (1), dT/dt ≤ λ−dT . This implies that T (t) ≤ T̂ (t)→ λ/d as t→∞. Therefore,
for q0 > 0, there exists tq0 > 0 such that T (t) ≤ λ/d+ q0 ∀t ≥ tq0. Then from system
(2)–(4), we have

dI

dt
≤ Ωi(t)(1− f)βV

(
λ

d
+ q0

)
− δI + aL,(15)

dL

dt
≤ Ωi(t)fβV

(
λ

d
+ q0

)
− (a+ δL)L,(16)

dV

dt
= Ωp(t)pI − cV.(17)

Now, consider the following comparison system

(18)

 dÎ/dt

dL̂/dt

dV̂ /dt

 = (Fτ − Vτ +Mq0)

 Î

L̂

V̂

 .

Then according to Zhang and Zhao [51], there exists a positive, τ -periodic function
(Ī(t), L̄(t), V̄ (t))T such that (Î(t), L̂(t), V̂ (t))T = eΘt(Ī(t), L̄(t), V̄ (t))T is a solution
of system (18), where Θ = ln ρ(ΦFτ−Vτ+Mq0(τ))/τ . Here, ρ(ΦFτ−Vτ+Mq0(τ)) < 1⇒
Θ < 0, which implies (Î(t), L̂(t), V̂ (t))T → (0, 0, 0)T as t → +∞. Therefore, the
(0, 0, 0)T solution of system (18) is globally asymptotically stable.

For any nonnegative initial value (I(0), L(0), V (0))T of system (15)–(17), we can
choose a sufficiently largem > 0 satisfying (I(0), L(0), V (0))T ≤ m(Ī(0), L̄(0), V̄ (0))T .
Clearly, m(Î(t), L̂(t), V̂ (t))T = meΘt(Ī(t), L̄(t), V̄ (t))T is also a solution of (18). Then
applying the comparison principle [40], we get (I(t), L(t), V (t))T ≤ m(Î(t), L̂(t), V̂ (t))T

for all t > 0. Therefore, we get I(t)→ 0, L(t)→ 0, and V (t)→ 0 as t→ +∞. Then,

D
ow

nl
oa

de
d 

10
/2

3/
17

 to
 1

46
.2

44
.1

3.
66

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECT OF PHARMACODYNAMICS ON HIV LATENT INFECTION 1799

by the theory of asymptotic autonomous systems [42], we get T (t)→ λ/d as t→ +∞.
Hence, Ri < 1 gives a condition for X0 to be globally asymptotically stable.

Appendix B. Proof of Theorem 3.5. Consider

D0 := {(T, I, L, V ) ∈ R4
+ : I > 0, L > 0, V > 0} and ∂D0 := R4

+\D0.

Define the Poincaré map P : R4
+ → R4

+ associated with system (1)–(4) by P (z0) =
u(τ, z0) ∀z0 ∈ R4

+, where u(t, z0) is the unique solution of system (1)–(4) with
u(0, z0) = z0 = (T0, I0, L0, V0). Then Pn(z0) = u(nτ, z0) ∀n ≥ 0.

Let Ri > 1. In this case, the infection-free equilibrium X0 = (λ/d, 0, 0, 0) is an
isolated invariant set in R4

+, and W s(X0) ∩ D0 = φ, where W s(X0) is the stable set
of X0, as stated in the following lemma.

Lemma B.1. If Ri > 1, then there exists a σ∗ > 0 such that for any z0 =
(T0, I0, L0, V0) ∈ D0 with ||z0 −X0|| ≤ σ∗, we have

lim sup
n→∞

D(Pn(z0), X0) ≥ σ∗,

where D(Z,X) denotes the distance between Z and X in R4.

Proof. Since Ri > 1, Lemma 3.3 implies that X0 is unstable, i.e., ρ(ΦFτ−Vτ (τ)) >
1. We can choose q1 > 0 small enough giving ρ(ΦFτ−Vτ−Mq1(τ)) > 1, where

Mq1 =

 0 0 Ωi(t)(1− f)βq1
0 0 Ωi(t)fβq1
0 0 0

 .

Note that the equation dT/dt = λ− dT has a unique equilibrium T ∗ = λ/d, which is
globally attractive in R+. Also, the following perturbed system,

(19)
dT̂ (t)
dt

= λ− (d+ σΩi(t)β)T̂ (t),

admits a unique solution

T̂ (t, σ) = e−dte−σβ
∫ t
0 Ωi(s)ds

[
T̂ (0, σ) + λ

∫ t

0
edseσβ

∫ s
0 Ωi(η)dηds

]
through the arbitrary initial value T̂ (0, σ), and has a unique periodic solution

T̂ ∗(t, σ) = e−dte−σβ
∫ t
0 Ωi(s)ds

[
T̂ ∗(0, σ) + λ

∫ t

0
edseσβ

∫ s
0 Ωi(η)dηds

]
,

where

T̂ ∗(0, σ) =
λ
∫ τ

0 e
dseσβ

∫ s
0 Ωi(η)dηds

edτeσβ
∫ τ
0 Ωi(s)ds − 1

.

Clearly, |T̂ (t, σ) − T̂ ∗(t, σ)| → 0 as t → ∞. Thus, T̂ ∗(t, σ) is globally attractive on
R+. By the implicit function theorem, it follows that T̂ ∗(0, σ) is continuous in σ with
limσ→0 T̂

∗(0, σ) = T ∗ = λ/d. The continuous dependence of the solution T̂ ∗(t, σ) on
the initial condition and parameter value implies that there exists a sufficiently small
σ1 with T̂ ∗(t, σ) > T ∗ − q1 ∀σ ≤ σ1 and all t ∈ [0, τ ]. By the periodicity of T̂ ∗(t, σ)
and constant T ∗ − q1, we see that T̂ ∗(t, σ) > T ∗ − q1 holds for all σ ≤ σ1 and all
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t ≥ 0. By the continuity of the solutions with respect to the initial values, there exists
a σ∗ > 0 such that any z0 ∈ D0 with ||z0 −X0|| ≤ σ∗ implies ||u(t, z0)− u(t,X0)|| <
σ1 ∀t ∈ [0, τ ]. We now prove that

lim sup
n→∞

D(Pn(z0), X0) ≥ σ∗.

If possible, suppose that

lim sup
n→∞

D(Pn(z0), X0) < σ∗

for some z0 ∈ D0. Without loss of generality we assume that

D(Pn(z0), X0) < σ∗ ∀n ≥ 0.

This implies, by continuity, that

||u(t, Pn(z0))− u(t,X0)|| < σ1 ∀n ≥ 0 ∀t ∈ [0, τ ].

Note that any t ≥ 0 can be expressed as t = nτ + t̃ with t̃ ∈ [0, τ) and n, the largest
integer less than or equal to t/τ . Therefore,

||u(t, z0)− u(t,X0)|| = ||u(t̃, Pn(z0))− u(t̃, X0)|| < σ1 ∀t ≥ 0.

Substituting u(t, z0) = (T (t), I(t), L(t), V (t)) and u(t,X0) = X0, we obtain I(t) <
σ1, L(t) < σ1, V (t) < σ1 ∀t ≥ 0. Then, from (1), we obtain

dT

dt
≥ λ− (d+ Ωi(t)βσ1)T.(20)

Take σ = σ1. Since the periodic solution T̂ ∗(t, σ) of (19) is globally attractive on R+
and T̂ ∗(t, σ) > T ∗ − q1, we have T (t) ≥ T ∗ − q1 for sufficiently large t. Using this in
(2)–(4), we obtain, for sufficiently large t, that

dI

dt
≥ −δI + aL+ Ωi(t)(1− f)β

(
λ

d
− q1

)
V,(21)

dL

dt
≥ −(a+ δL)L+ Ωi(t)fβ

(
λ

d
− q1

)
V,(22)

dV

dt
= Ωp(t)pI − cV.(23)

Again, for a comparison system

(24)

 dÎ/dt

dL̂/dt

dV̂ /dt

 = (Fτ − Vτ −Mq1)

 Î

L̂

V̂

 ,

there exists a positive τ -periodic function (Ī(t), L̄(t), V̄ (t))T so that (Î(t), L̂(t), V̂ (t))T=
eΘ1t(Ī(t), L̄(t), V̄ (t))T is a solution of system (24), where Θ1 = ln ρ(ΦFτ−Vτ−Mq1(τ))/τ
[51]. Here, ρ(ΦFτ−Vτ−Mq1(τ)) > 1 ⇒ Θ1 > 0, which implies that, for nonnegative
integer n, (Î(nτ), L̂(nτ), V̂ (nτ))T = eΘ1nτ (Ī(nτ), L̄(nτ), V̄ (nτ))T → (∞,∞,∞)T as
n→∞.

For any nonnegative initial value (I(0), L(0), V (0))T of system (21)–(23), we can
choose a small enough m1 > 0 satisfying (I(0), L(0), V (0))T ≥ m1(Ī(0), L̄(0), V̄ (0))T .
Clearly, m1(Î(t), L̂(t), V̂ (t))T = m1e

Θ1t(Ī(t), L̄(t), V̄ (t))T is also a solution of (24).
Then applying the comparison principle [40], we get (I(t), L(t), V (t))T ≥ m1(Î(t), L̂(t),
V̂ (t))T for all t > 0. Therefore, we get I(nτ)→∞, L(nτ)→∞, and V (nτ)→∞ as
n→∞, which is a contradiction. This completes the proof.
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We know from Theorem 3.1 that {Pn}n≥0 admits a global attractor in R4
+. We

now prove that {Pn}n≥0 is uniformly persistent with respect to (D0, ∂D0). For any
z0 ∈ D0, from (1) we have

T (t) = e−
∫ t
0 a(s̃)ds̃

[
T0 + λ

∫ t

0
e
∫ s̃1
0 a(s̃)ds̃ds̃1

]
(25)

≥ λe−
∫ t
0 a(s̃)ds̃

∫ t

0
e
∫ s̃1
0 a(s̃)ds̃ds̃1 > 0 ∀t > 0,

where a(t) = d + Ωi(t)βV (t). As generalized to nonautonomous systems [39], the
irreducibility of the cooperative matrix

M̃(t) =

 −δ a Ωi(t)(1− f)βT (t)
0 −(a+ δL) Ωi(t)fβT (t)

Ωp(t)p 0 −c


implies that (I(t), L(t), V (t))T � 0 ∀t > 0. Thus both R4

+ and D0 are positively
invariant. Clearly, ∂D0 is relatively closed in R4

+.
Note that

(26) M∂ := {z0 ∈ ∂D0 : Pn(z0) ∈ ∂D0,∀n ≥ 0} = {(T, 0, 0, 0) ∈ R4
+ : T ≥ 0},

i.e., for any z0 = (T0, I0, L0, V0) ∈ {z0 ∈ ∂D0 : Pn(z0) ∈ ∂D0,∀n ≥ 0}, we have
I(nτ) = L(nτ) = V (nτ) = 0 ∀n ≥ 0. If this is not true, then we can get some
integer n1 ≥ 0 such that (I(n1τ), L(n1τ), V (n1τ))T > 0. Then by taking n1τ as an
initial time, (25) gives T (t) > 0 ∀t > n1τ . As mentioned above, generalization to
nonautonomous systems provides (I(t), L(t), V (t))T � 0 ∀t > n1τ , where the initial
value (I(n1τ), L(n1τ), V (n1τ))T > 0. This gives Pn(z0) ∈ D0 ⇒ z0 /∈ {z0 ∈ ∂D0 :
Pn(z0) ∈ ∂D0,∀n ≥ 0}, which is a contradiction. Hence (26) is true.

Note that the infection-free equilibrium X0 = (λ/d, 0, 0, 0) is a unique fixed point
of P in M∂ . Moreover, from Lemma B.1, X0 is an isolated invariant set in R4

+ and
W s(X0)

⋂
D0 = φ. Also, using I = L = V = 0 in system (1)–(4), the resulting

linear nonhomogeneous equation dT/dt = λ − dT admits a global asymptotic stable
equilibrium λ/d. Note that every orbit in M∂ approaches X0, and X0 is acyclic in
M∂ . By Zhao [52], it follows that {Pn}n≥0 is uniformly persistent with respect to
(D0, ∂D0), and the solutions of system (1)–(4) are uniformly persistent with respect
to (D0, ∂D0), i.e., there exists a ξ > 0 such that any solution (T (t), I(t), L(t), V (t))
of system (1)–(4) with initial value (T0, I0, L0, V0) ∈ D0 satisfies lim inf

t→∞
I(t) ≥ ξ,

lim inf
t→∞

L(t) ≥ ξ, and lim inf
t→∞

V (t) ≥ ξ.
Furthermore, P has a fixed point (T ∗(0), I∗(0), L∗(0), V ∗(0)) ∈ D0 [52]. Then

T ∗(0) ≥ 0, I∗(0) > 0, L∗(0) > 0, and V ∗(0) > 0. Moreover, there exists some t̄ ∈ [0, τ ]
with T ∗(t̄) > 0. If this is not true, we have T ∗(t̄) ≡ 0 ∀t ∈ [0, τ ]. Then, due to the
periodicity of T ∗(t), we have T ∗(t) ≡ 0 ∀t ≥ 0. Then, from (1), 0 = λ > 0, which is a
contradiction. Thus we obtain

(27) T ∗(t) = e−
∫ t
t̄

a∗(s̃)ds̃
[
T ∗(t̄) + λ

∫ t

t̄

e
∫ s̃1
t̄

a∗(s̃)ds̃ds̃1

]
> 0 ∀t ∈ [t̄, t̄+ τ ],

where a∗(t) = d+Ωi(t)βV ∗(t). The periodicity of T ∗(t) implies that T ∗(t) > 0 ∀t ≥ 0.
From (2)–(4), and the irreducibility of the cooperative matrix −δ a Ωi(t)(1− f)βT ∗(t)

0 −(a+ δL) Ωi(t)fβT ∗(t)
Ωp(t)p 0 −c

 ,
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we get (I∗(t), L∗(t), V ∗(t)) ∈ Int(R3
+) ∀t ≥ 0. Therefore, (T ∗(t), I∗(t), L∗(t), V ∗(t)) is

a positive τ -periodic solution of system (1)–(4).
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