
Mathematical Population Studies, 18:122–149, 2011
Copyright © Taylor & Francis Group, LLC
ISSN: 0889-8480 print/1547-724X online
DOI: 10.1080/08898480.2011.564566

Modelling Mutation to a Cytotoxic T-lymphocyte
HIV Vaccine

Bernhard P. Konrad
Faculty of Mathematics, Karlsruhe Institute of Technology, Germany

Naveen K. Vaidya
Theoretical Biology and Biophysics, Los Alamos National Laboratory,
New Mexico, USA

Robert J. Smith?
Department of Mathematics and Faculty of Medicine, The University
of Ottawa, Canada

Resistance to a postinfection HIV vaccine that stimulates cytotoxic T-lymphocytes
(CTLs) depends on the relationship between the vaccine strength, the fitness cost
of the mutant strain, and the rate of mutant escape. If the vaccine is strong
enough, both strains of the virus should be controlled by administering the vaccine
sufficiently often. However, if escape mutation to the vaccine occurs, then either
the wild type or the mutant can outcompete the other strain. Imperfect adherence
may result in the persistence of the mutant, while fluctuations in the vaccination
time—even if no vaccines are missed—may result in the mutant outcompeting the
wild type.
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1. INTRODUCTION

Virus-specific cytotoxic T-lymphocytes (CTLs) control HIV-1
replication in humans and SIV replication in rhesus monkeys,
thereby delaying the onset of disease and progression to AIDS (Klein
et al., 1998; Jin et al., 1999; Schmitz et al., 1999; Amara et al., 2002;
Barouch et al., 2003). Controls against SIV during trials of vaccines
that elicit CTL responses (Barouch et al., 2000; Amara et al., 2001,
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2002) provide hope that a T-cell-based vaccine will be efficacious
against HIV/AIDS, and have shown preliminary efficacy. However,
despite the CTL responses, HIV-infected individuals progress to AIDS
in most cases, and there is evidence of the failure of such vaccines
(Barouch et al., 2002, 2003). The role of CTLs during the course of
HIV-1 infection is still unclear.

Experimental results show that one of the main reasons for CTL
response failure is viral escape from CTLs (Barouch et al., 2002,
2003; Asquith, 2008). CTLs lyse infected cells by recognizing viral
peptide epitopes displayed on the cell surface and bind to class I
major histocompatibility complex (MHC) molecules (Collins et al.,
1998; Klein et al., 1998; Smith, 2004). Due to a high mutation
rate in both HIV-infected humans and SIV-infected monkeys, viral
mutation can develop in CTL epitopes, resulting in escape of these
viruses from CTL recognition (Barouch et al., 2003; Jamieson et al.,
2003; Goulder and Watkins, 2004; Smith, 2004). For example, Asquith
(2008) observed 21 different epitope locations where escape mutation
occurs. These mutants show a lower level of fitness than wild-type
virus (Smith, 2004). However, selection pressure exerted by CTLs on
viral replication may cause escape mutants to outcompete the wild-
type virus (Barouch et al., 2003). Here, we investigate the effect of
viral mutation on the ability of CTLs to control the viral infection
when a postinfection vaccine is administered at regular intervals.

Currently, the major control measure to combat HIV consists of
combinations of antiretroviral drugs, which are expensive and have a
high pill burden and debilitating side effects, producing nonadherence
and drug resistance (Altice and Friedland, 1998; Bartlett, 2002;
Smith, 2006; Miron and Smith?, 2010). Unlike antiretroviral drugs,
a single drug holiday may be critical because the intervals between
subsequent vaccinations are significantly longer than the intervals
between subsequent drug doses.

Korthals Altes et al. (2002) and Ball et al. (2007) have theorized
the potential of HIV to evade a CTL vaccine. Other diseases show
antigenic variation to annual vaccination, suggesting that a CTL
vaccine is unlikely to be all-encompassing (Gerdil, 2003). Here, we
assume that cells infected with the mutant strain can be partially
controlled by CTLs but less efficiently than control of the wild-type
strain. As with drug resistance, we assume a trade-off for mutation
in terms of the rate of infection or the total number of virions
each infected cell can produce. We assume that the wild type will
outcompete the mutant in the absence of the vaccine but that the CTL
vaccine may reduce the wild type’s fitness, giving an advantage to the
mutant.
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Smith? and Schwartz (2008) modelled a CTL vaccine in the absence
of resistance and showed that the virus could be eliminated if the
vaccine were sufficiently strong, assuming perfect adherence and no
viral mutation in response to the vaccine. We extend that model to
incorporate mutation and address the following questions. Can we
determine the critical vaccine threshold for eradication of the virus?
Under what conditions can a mutant strain of the virus persist in
the presence of a CTL vaccine? How does vaccine frequency affect the
emergence of resistance?

2. THE MODEL

Let T denote the density of susceptible CD4+ T cells. We consider two
virus strains, the wild-type virus V1 and the mutant V2. CD4+ T cells
infected with wild-type and mutant strains are denoted by T1 and T2.
The density of specialized CTL cells produced by the body’s immune
system to kill infected CD4+ T cells is denoted by C.

Susceptible CD4+ T cells are produced with constant rate ! and
die with rate "T . They are infected by wild-type or mutant strains
at rates r1 and r2. New virus particles are produced at rates n1
and n2. The chance of de novo mutation is #. Free-virus particles
and infected T cells die at rates "V and "I . Infected T cells are also
cleared by the body’s defensive CTLs; this happens at rates p1 and
p2. CTLs reproduce in the presence of infected T cells at rate $ and
die at rate "C . At fixed vaccination times tk, k = 1%2% & & & , vaccination
increases CTL cells by a fixed amount C̃, which is proportional to the
total number of CTLs the vaccine stimulates.

For t != tk, the model is:

T ′'t( = ! − r1V1T − r2V2T − "TT (1)

V ′
1't( = n1T1 − "VV1 (2)

V ′
2't( = n2T2 − "VV2 (3)

T ′
1't( = '1− #(r1V1T − p1T1C − "IT1 (4)

T ′
2't( = #r1V1T + r2V2T − p2T2C − "IT2 (5)

C ′'t( = $'T1 + T2(C − "CC% (6)

and for t = tk:

)C ≡ C't+k (− C't−k ( = C̃% (7)
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FIGURE 1 The model. Susceptible T cells are produced at a constant rate
! and die at rate "T . Once infected by the wild-type virus V1 or the mutant
strain V2, they start to produce new virus particles at rates n1 and n2. Due
to mutation, some proportion # of T cells infected by the wild type become
resistant. Infected T cells die at rate "I . The production of CTL cells is
stimulated by infected T cells at rate $. CTLs then kill productively infected
T cells at rates p1 and p2, respectively.

where C't−k ( is the CTL concentration immediately before the impulse
and C't+k ( is the CTL concentration immediately after the impulse.
The model is represented in Figure 1.

To understand the effect of CTL killing of infected cells on the viral
dynamics, we could add more epitope mutations and corresponding
specific CTL cells. However, as our primary objective is to evaluate the
activation of CTLs due to vaccine administration, we assume only one
type of CTL cell. In our simulations, the CTL concentration growth
is dominated by vaccination. For the sake of simplicity, we take the
same rate of CTL clone activation for both virus strains.

The mutant strain possesses a fitness cost resulting in a reduced
infectivity and a reduced replication capacity (Smith, 2004), while the
de novo mutation rate is 3× 10−5 per nucleotide (Mansky and Temin,
1995), so '1− #(r1n1 > r2n2.

During in vitro experiments, in which the ability of the mutants
Gag p11C, Env TL9, Env p41A, and Pol p68A to bind to MHC class
I molecule Mamu-A*01 and be recognized by epitope-specific CTLs
were assessed, Barouch et al. (2002, 2003) observed partial CTL
responses against mutant viruses. This implies that p2 > 0. Many
escape mutations often result in a reduced recognition of mutant
epitope by CTLs (Barouch et al., 2003; Jamieson et al., 2003; Goulder
and Watkins, 2004; Smith, 2004). For example, compared with the
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wild type, the mutant p68A peptide had more than 2 log-fold lower
affinity for Mamu-A*01 and more than 3 log-fold lower recognition by
CD8+ T-lymphocytes (Barouch et al., 2002). This implies p1 > p2.

3. LOCAL STABILITY

Because of the impulsive effect in C, there are no classical equilibria
for System (1)–(7). As this system is autonomous, we investigate
impulsive orbits (or orbits, for short) defined by T ′ = V ′

1 = V ′
2 = T ′

1 =
T ′

2 = 0 and C != 0. We use the abbreviation:

aj = aj'C( = pjC + "I for j = 1%2& (8)

The disease-free orbit is:

'&T % &V1% &V2% &T1% &T2( =
(

!

"T

%0%0%0%0
)
& (9)

The mutant-only orbit is in the form 'T̂ %0% V̂2%0% T̂2(, where:

T̂ = "Va2

r2n2

V̂2 = r2n2! − "T"Va2

r2a2"V

T̂2 = "C

$
− r2n2! − "T"Va2

r2n2a2
&

Due to mutation, there is no wild-type-only orbit.
For both strains of the virus to be eradicated, the disease-free

orbit must be locally stable. Otherwise, both strains of the virus can
re-emerge even if the total number of virus particles and infected
cells is already low, with the potential effect that the mutant strain
gains an advantage. The latter scenario is of particular importance
if the mutant-only orbit is locally stable. If both the disease-free and
mutant-only orbits are locally unstable, then the two virus strains will
coexist in the presence of the vaccine.

Definition 3.1. Let C∗
1 be the value of C so that:

"T"Va1 = '1− #(r1n1!* that is, C∗
1 ≡ 1

p1

(
'1− #(r1n1!

"T"V

− "I

)
& (10)

Let C∗
2 be the value of C so that:

"T"Va2 = r2n2!* that is, C∗
2 ≡ 1

p2

(
r2n2!

"T"V

− "I

)
& (11)
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Denote C∗ ≡ max+C∗
1%C

∗
2,. Finally, let C

∗
3 be the value of C so that:

r2n2a1 = '1− #(r1n1a2* that is, C∗
3 = '1− #(r1n1 − r2n2

r2n2p1 − '1− #(r1n1p2
& (12)

For reasonable parameter values, C∗
1 and C∗

2 are positive. C∗
1

determines the long-term behavior of the wild-type strain, while
C∗

2 determines the long-term behavior of the mutant strain. The
parameter C∗

3 can take any sign and is critical in the analysis of the
competition between the two virus strains.

Lemma 3.2. Either

C∗
1 = C∗

2 = C∗
3 or C∗

3 > C∗
1 > C∗

2 or C∗
2 > C∗

1 > C∗
3 & (13)

Proof. Case 1: C∗
1 = C∗

2 . Set C = C∗
1 = C∗

2 and conclude that
!

"T"V

= a1

'1− #(r1n1
and

!

"T"V

= a2

r2n2
& (14)

Thus,
a1

'1− #(r1n1
= a2

r2n2
⇒ r2n2a1 = '1− #(r1n1a2 ⇒ C = C∗

3 & (15)

Case 2: C∗
1 > C∗

2 . Set C = C∗
2 . Then

C < C∗
1 ⇔ a1 <

'1− #(r1n1!

"T"V

⇔ r2n2a1 < '1− #(r1n1
r2n2!

"T"V

(16)

⇔ r2n2a1 < '1− #(r1n1a2

⇔ C < C∗
3% (17)

and hence C∗
3 > C∗

2 .
Set C = C∗

3 > C∗
2 . Then

r2n2a1 = '1− #(r1n1a2 ⇒ r2n2a1 > '1− #(r1n1
r2n2!

"T"V

(18)

⇒ "T"Va1 > '1− #(r1n1! ⇒ C > C∗
1% (19)

and so C∗
3 > C∗

1 .
Case 3: C∗

1 < C∗
2 . Set C = C∗

1 . Then

C < C∗
2 ⇔ a2 <

r2n2!

"T"V

⇔ '1− #(r1n1a2 < r2n2
'1− #(r1n1!

"T"V

(20)

⇔ '1− #(r1n1a2 < r2n2a1 ⇔ C > C∗
3 & (21)

Thus, C∗
1 > C∗

3 and C∗
2 > C∗

3 .
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As all the parameters are subject to slight fluctuations, the case
C∗

1 = C∗
2 = C∗

3 is of no practical importance.

Theorem 3.3. The disease-free orbit is locally stable if and only if
C > C∗, that is, C > C∗

1 and C > C∗
2 . The mutant-only orbit is locally

stable if and only if C∗
2 > C > C∗

3 .

Proof. We use the abbreviations:

G1 = G1'-( = det
( −"V − - n1

'1− #(r1T −a1 − -

)

G2 = G2'-( = det
(−"V − - n2

r2T −a2 − -

)
&

The Jacobian matrix of our system is:

J 'T %V1%V2%T1%T2(

=





−r1V1 − r2V2 − "T −r1T −r2T 0 0
0 −"V 0 n1 0
0 0 −"V 0 n2

'1− #(r1V1 '1− #(r1T 0 −a1 0
#r1V1 + r2V2 #r1T r2T 0 −a2




&

For the disease-free orbit, we have &V1 = &V2 = &T1 = &T2 = 0, so that
the associated characteristic polynomial

det'J − -I( = −'"T + -(G1G2 − '"V + -(
[
'1− #(r1V1''a1 + -(G2 (22)

+ #r1n1T 'a2 + -((+ '#r1V1 + r2V2('a2 + -(G1
]
% (23)

simplifies to

det
(
J

(
!

"T

%0%0%0%0
)
− -I

)
= −'"T + -(G1G2& (24)

With T = !
"T
, we have

G1 = -2 + 'a1 + "V (-+ "Va1 − '1− #(r1n1
!

"T

% (25)

and

G2 = -2 + 'a2 + "V (-+ "Va2 − r2n2
!

"T

& (26)

An orbit is locally asymptotically stable if and only if all the zeros
of the characteristic polynomial have negative real part. We use the
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Routh-Hurwitz criterion to check this condition for both G1 and G2.
The disease-free orbit is locally asymptotically stable if and only if:

"T"Va1 > '1− #(r1n1! and "T"Va2 > r2n2!& (27)

This is equivalent to C > C∗.
For the mutant-only orbit, V1 = T1 = 0, so that the characteristic

polynomial simplifies to:

det'J 'T %0%V2%0%T2(− -I(

= −G1 ''"T + -(G2 + r2V2'"V + -('a2 + -(( (28)

= −G1G3% (29)

where:

G3 = -3 + '"T + "V + a2 + r2V2(-
2

+ ''"V + a2('"T + r2V2((-+ r2V2"Va2 (30)

= -3 +
(
"V + a2 +

r2n2!

a2"V

)
-2 +

(
'"V + a2(

r2n2!

a2"V

)
-

+ r2n2! − "T"Va2& (31)

From the Routh-Hurwitz criterion, the mutant-only orbit is locally
stable if:

"T"Va2 < r2n2!& (32)

This is equivalent to C < C∗
2 . For the mutant-only orbit, we have

T = "V a2
r2n2

and

G1 = -2 + 'a1 + "V (-+ "V

(
a1 −

'1− #(r1n1

r2n2
a2

)
& (33)

This gives the second condition for the mutant-only orbit to be stable,
namely:

r2n2a1 > '1− #(r1n1a2& (34)

That is, C > C∗
3 .

The mutant strain can only emerge if C∗
2 > C. For C > C∗

2 , the
trajectory of V2 does not completely lie in the positive plane, which
does not make biological sense. The wild type can only emerge locally
around the disease-free orbit if C > C∗

1 . In the case C∗
2 > C∗

1 > C > C∗
3 ,

it is not only the presence of the CTLs but also the competition with
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FIGURE 2 Regions of stability. A. C∗
2 < C∗

1 . If C > C∗
1 , the mutant cannot

survive on its own, so the disease-free orbit is stable. Conversely, if C < C∗
1 ,

both strains coexist. B. C∗
1 < C∗

2 . The disease-free orbit is stable if C > C∗
2

and unstable otherwise. If C∗
3 < C < C∗

2 , then the mutant survives on its own,
while if 0 ≤ C < C∗

3 , both strains coexist.

the mutant strain that prevents the emergence of wild-type virus. If
neither the disease-free orbit nor the mutant-only orbit are locally
stable, then neither the wild-type nor the mutant strain is eliminated.
In this case, both strains coexist.

If the vaccine is not strong enough to guarantee C > C∗, then it
is not possible to eradicate both strains of the virus. If C∗

2 > C∗
1 and

if the vaccine is such that C∗
2 > C > C∗

3 , then the mutant strain may
become dominant (Figure 2).

4. GLOBAL STABILITY

The biologically relevant domain +'x1% & & & % xn( . x1 > 0% & & & % xn > 0, ⊂
!n 'n ∈ "( is called the positive plane.

4.1. Sufficient Vaccination

From the previous section, we know that a necessary condition for
both virus strains to be eradicated is C > C∗. Theorem 4.1 tells us
that this condition is sufficient.
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This result, which was not possible to derive from Smith? and
Schwartz (2008), allows us to give a mathematically supported
recommendation for the desired amount of CTL cells in the blood to
resist HIV.

Theorem 4.1. The disease-free orbit is globally stable in the positive
plane if and only if C > C∗, that is, C > C∗

1 and C > C∗
2 .

Proof. The maximum value of T is the steady-state level before
infection, while the minimum value of C must be greater than C∗.
Without loss of generality, let T and C equal these values. Thus:

T ≡ !

"T

(35)

C ≡ Cmin > C∗& (36)

Fixing T and C at these values ensures optimal growth for the
virus. If virus particles are present and if their total number grows,
then the amount of healthy T cells falls below its maximal value.
This limits the recruitment of new infected cells. As the vaccine is
administered at fixed intervals, it stays above its minimal value all the
time, only reaching it at that time when the next vaccination occurs.

By fixing T , we lose all orbits made possible by different values of
T . However, for C > C∗, the mutant-only orbit is not in the positive
plane, because V̂2 < 0. No coexistence orbit can lie in the positive
plane as V2 < V̂2, due to the competition between the virus strains.
Consequently, we restrict the result of this theorem to the positive
plane.

As T and C are now fixed, System (1)–(7) simplifies to the linear
ordinary differential equation:





V ′
1

V ′
2

T ′
1

T ′
2




=





−"V 0 n1 0
0 −"V 0 n2

'1−#(r1!
"T

0 −a1 0
#r1!
"T

r2!
"T

0 −a2









V1

V2

T1

T2




& (37)

The disease-free orbit is now represented by the only equilibrium
'0%0%0%0(. A linear system behaves globally just as it behaves locally:
a locally stable equilibrium is globally stable. The characteristic
function of the matrix of Eq. (37) inherits the eigenvalues from G1
and G2; the equilibrium is then globally stable if C > C∗

1 and C > C∗
2 .

From Theorem 3.3, the disease-free orbit is not locally stable if C < C∗.
Then it cannot be globally stable for C < C∗.
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Regardless of how many HIV virus particles circulate in the
patient’s blood or what strain these particles are, the minimal
required vaccine strength C∗ will always be sufficient to control the
virus: the vaccine threshold to eradicate both strains of the virus is C∗.

Corollary 4.2. Whenever C > C∗
1 , the wild type cannot persist in the

positive plane.

Proof. Following the proof of Theorem 4.1, the differential equations
for V2 and T2 do not influence the wild type. If we reduce Eq. (37) to:

(
V ′

1

T ′
1

)
=

( −"V n1
'1−#(r1!

"T
−a1

)(
V1

T1

)
% (38)

the equilibrium '0%0( is locally stable if C > C∗
1 . With the over-

estimations underlying Eq. (37), the result follows.

4.2. Insufficient Vaccination

We investigate the effect of insufficient vaccination. In the previous
section, the mutant strain could become dominant if the vaccine only
results in intermediate CTL levels.

Wolkowicz and Lu (1992) describe the competition between the
species X1 and X2 for the resource S as:

S ′'t( = 'S0 − S(D − q1

y1
X1S − q2

y2
X2S (39)

X ′
1't( = 'q1S −D1(X1 (40)

X ′
2't( = 'q2S −D2(X2& (41)

All the parameters, S0, D, qi, yi, Di, i = 1%2, are positive constants.
Given that the competitors have different fitness levels, one expects
that the weaker competitor cannot survive.

Definition 4.3. Define -i, i = 1%2, as:

-i =
Di

qi

& (42)

These positive parameters are called break-even concentrations.

Lemma 4.4. Assume that -2 < -1 < S0. Then the equilibrium value
(
-2%0%

y2D'S0 − -2(

D2

)
% (43)

is globally stable in the positive plane.
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Proof. In Wolkowicz and Lu (1992).

If C∗
2 > C, then the break-even concentration of T2 is smaller than

the corresponding S0, and if C > C∗
3 then the break-even concentration

of T2 is smaller than the break-even concentration of T1.

Theorem 4.5. The mutant-only orbit is globally stable in the positive
plane if and only if the vaccine is taken at intermediate strength, that
is, C∗

2 > C > C∗
3 .

Proof. By Lemma 3.2, either

C∗
2 > C > C∗

1 > C∗
3% (44)

or

C∗
2 > C∗

1 > C > C∗
3 & (45)

If inequality (44) holds, Corollary 4.2 implies that the mutant-only
orbit is globally stable for all positive starting values.

If inequality (45) holds, the dynamics of the virus particles are fast
compared to the dynamics of T cells (Perelson et al., 1996), so the
system is at quasi steady state and Vi = ni

"V
Ti, i = 1%2.

Then our model reads:

T ′'t( = ! − r1n1

"V

T1T − r2n2

"V

T2T − "TT (46)

T ′
1't( =

(
'1− #(r1n1

"V

T − a1

)
T1 (47)

T ′
2't( =

#r1n1

"V

T1T +
(
r2n2

"V

T − a2

)
T2& (48)

This system describes a competition between T1 and T2 for the
resource T . An overestimation in favor of the wild type is to drop the
mutation term in the differential equation of T2. This leads to:

T ′'t( = ! − r1n1

"V

T1T − r2n2

"V

T2T − "TT (49)

T ′
1't( =

(
'1− #(r1n1

"V

T − a1

)
T1 (50)

T ′
2't( =

(
r2n2

"V

T − a2

)
T2% (51)

which is of the same form as System (39)–(41).
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The break-even concentrations are:

-1 =
a1"V

'1− #(r1n1
and -2 =

a2"V

r2n2
& (52)

Due to C∗
1 > C > C∗

3 , -2 < -1 < S0, and, with Lemma 4.4, the wild type
is driven extinct.

For the necessity part, Theorem 3.3 implies that if C∗
2 > C > C∗

3
does not hold, then the mutant-only orbit is not locally stable and
cannot be globally stable.

If C∗
2 > C > C∗

1 > C∗
3 , the same simplification as in the proof leads

to a break-even concentration -1 of the wild-type with -1 > S0.
Wolkowicz and Lu (1992) show that again the wild-type is driven
extinct.

The values -1 and -2 are functions of the amount of vaccination, the
fitness cost and a measure of escape mutation. If -2 < -1, then C >C∗

3 .
At intermediate values (C∗

2 > C > C∗
3), the mutant strain becomes

dominant.
Local stability is needed to establish global stability during the

proof of Theorem 4.1, because the lack of local stability for the mutant-
only orbit when C > C∗ implies that global stability is impossible.
Similarly, the disease-free orbit is not locally stable if C < C∗ and
cannot be globally stable. In the proof of Theorem 4.5, the mutant-
only orbit is not locally stable when C∗

2 > C > C∗
3 and hence cannot be

globally stable.

5. THE EFFECTS OF PARTIAL ADHERENCE

In the two previous sections, we established the critical level of
CTLs necessary to control the virus. We also saw that resistance
may emerge if the vaccine results in intermediate CTL levels, where
the threshold is determined by a combination of vaccine strength,
fitness cost, and escape mutation rate. However, a postinfection CTL
vaccine is administered at regular intervals so that the actual CTL
amount is not constant. In this section, we determine the maximal
time between the vaccinations, depending on the vaccine strength,
to ensure that the CTL amount always exceeds the desired level.
Establishing this maximal time frame allows us to recommend a CTL
vaccine treatment.

As with antiretroviral drugs (Smith, 2006; Miron and Smith?,
2010), taking extended breaks from the vaccine may result in
the development of resistance. We examine how many vaccinations
may be missed before the virus becomes uncontrolled and how
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many vaccinations must then be taken in succession to return to
preinterruption CTL levels.

5.1. Perfect Adherence

The moments of vaccination are denoted by tk and the CTL count
immediately after the kth vaccination is denoted by C't+k (. From the
impulsive differential equation for C, we have:

C't( = C't+k (e
∫ t
tk
'$'T1'u(+T2'u((−"C (du

'tk < t < tk+1( (53)

> C't+k (e
−"C 't−tk(% (54)

as T1 and T2 are non-negative.
If the vaccine is successful, then the approximation in Eq. (54) is

accurate, as T1 and T2 are very small. At the beginning of the vaccine
treatment, however, it may be a coarse approximation, as Figure 3
shows.

If the vaccine is taken at regular intervals with length / , we
calculate an upper bound on the length of that interval. The

FIGURE 3 CTL counts using the exact value, calculated from Eq. (53) (solid
curve) and the approximation, calculated from Eq. (54) (dashed curve). The
approximation is a coarse one for initial times, but quickly comes into phase
as the virus is controlled.
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underestimate

C't( = C't+k (e
−"C 't−tk( tk < t < tk+1% (55)

is a conservative measure of the ability of CTLs to control the virus.
If C'0( = 0, we have:

C't+1 ( = C̃ (56)

C't−2 ( = C̃e−"C/ (57)

C't+2 ( = C̃'1+ e−"C/ ( (58)

C't−3 ( = C̃'1+ e−"C/ (e−"C/ (59)

C't+3 ( = C̃'1+ e−"C/ + e−2"C/ ( (60)
&&& (61)

C't+p ( = C̃'1+ e−"C/ + · · · + e−'p−1("C/ ( = C̃
1− e−p"C/

1− e−"C/
(62)

lim
p→.

C't+p ( =
C̃

1− e−"C/
& (63)

Trajectories converge to an impulsive periodic orbit with endpoints:

C̃

1− e−"C/
and

C̃e−"C/

1− e−"C/
& (64)

Assuming perfect adherence, CTL levels after the nth vaccination
are approximately:

C't+n ( =
C̃

1− e−"C/
& (65)

For perfect adherence, to control the virus and avoid resistance, the
minimum value of the periodic orbit must exceed the threshold. Thus,

e−"C/ >
C∗

C̃ + C∗
&

So resistance is avoided if

/ < /max ≡
1
"C

ln

(
C̃ + C∗

C∗

)

& (66)

We have an upper bound for the maximum time that individuals
can wait between vaccinations: a CTL vaccine taken at regular
time intervals with the length of / , with / < /max, can theoretically
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eradicate both strains of the virus. This is consistent with the less
specific finding in Smith? and Schwartz (2008). Moreover, if the
time / between two vaccinations satisfies / > /max, then the mutant
strain may persist. The upper bound /max depends on the eradication
threshold C∗ = max+C∗

1%C
∗
2, and on the parameters for both the wild-

type and mutant strains.

5.2. Imperfect Adherence

We assume that / ≤ /max and that sufficient vaccinations have
been taken so that C is approximately on the periodic orbit. If h
vaccinations are subsequently missed, we have:

C't−n+h( =
C̃e−h"C/

1− e−"C/
& (67)

Resistance is avoided if C't−n+h( > C∗. Hence,

C̃e−h"C/

1− e−"C/
> C∗ ⇒ h <

1
"C/

ln
C̃

C∗'1− e−"C/ (
& (68)

This gives an upper bound on the total number of vaccinations that
may be missed before resistance emerges.

To return to CTL levels approximating preinterruption values when
k vaccinations are taken in succession, we require:

C't−n+h+k( >
C̃e−"C/

1− e−"C/
− 0% (69)

for some level of tolerance 0. Using impulsive theory,

C't+n+h( = C̃ + C̃e−h"C/

1− e−"C/
(70)

C't−n+h+1( = C̃e−"C/

(
1+ e−h"C/

1− e−"C/

)
(71)

C't+n+h+1( = C̃

(
1+ e−"C/ + e−'h+1("C/

1− e−"C/

)
(72)

C't−n+h+2( = C̃e−"C/

(
1+ e−"C/ + e−'h+1("C/

1− e−"C/

)
(73)

&&& (74)

C't−n+h+k( = C̃e−"C/

(
1+ e−"C/ + · · · + e−'k−1("C/ + e−'h+k−1("C/

1− e−"C/

)
(75)
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= C̃e−"C/

(
1− e−k"C/

1− e−"C/
+ e−'h+k−1("C/

1− e−"C/

)
& (76)

Hence:

C't−n+h+k(−
C̃e−"C/

1− e−"C/
= C̃e−'k+1("C/ 'e−'h−1("C/ − 1(

1− e−"C/
> −0& (77)

The required number of vaccinations to return to within 0 of perfect
adherence satisfies

k >
1

"C/
ln

(
C̃'1− e−'h−1("C/ (

0'1− e−"C/ (

)

− 1% (78)

which is the minimum number of vaccinations which must be taken
after a vaccination break. Thus, a patient who missed h vaccinations
must take at least k vaccinations in succession, in order to return to
the periodic orbit (Miron and Smith?, 2010).

6. SIMULATIONS

Table 1 presents the parameters used in the simulations. These
parameters give a viral load a little higher than HIV levels in humans
but closer to SIV level in rhesus monkeys.

In the absence of vaccination, the CTL count approaches a stable
equilibrium (Figure 4A). Under regular vaccinations, the CTL count
oscillates in an impulsive periodic orbit (Figure 4B). The results are
qualitatively unchanged between low-level and no vaccination.

When C∗
2 < C∗

1 , the mutant and wild type can coexist if vaccination
is low, but nonzero. Both values approach a stable orbit (Figures 5A
and 6A). When the vaccine is taken regularly, both wild type and
mutant oscillate in an impulsive periodic orbit. The disease-free
equilibrium is unstable, but the mutant exists only at low levels.
Uninfected T cell counts oscillate at around 1,721 cells per microliter,
less than the 1,800 cells per microliter for the uninfected patient.

When C∗
2 > C∗

1 , the mutant persists at high levels, while the wild
type is driven to extinction if vaccination is low or zero. The mutant
oscillates in an impulsive periodic orbit (Figures 5B and 6B). The
disease-free equilibrium is also unstable, in this case. Uninfected T
cell counts oscillate at around 1,726 cells per microliter, less than
the 1,800 cells per microliter for the uninfected patient, but slightly
higher than for low vaccination. These results show that, for low-level
vaccination, a combination of fitness cost and escape rate determines
which viral type dominates.
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FIGURE 4 CTL counts when C∗
2 < C∗

1 with and without low-level
vaccination. A. In the absence of the vaccine, the CTL counts oscillate and
approach an equilibrium value of approximately 61 cells/1L. All parameters
are as in Table 1, with p2 = 0&045 and Ci = 0. B. When the vaccine is taken
every three days, stimulating 10 cells/1L, the CTL count stabilizes in an
impulsive periodic orbit, oscillating around an average of approximately
63 cells/1L.
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FIGURE 5 Vaccination may result in either the wild-type or mutant strains
dominating, or both strains may be eradicated. A. The case C∗

2 < C∗
1 ,

with low-level vaccination. The two populations coexist, with high levels
(approximately 190 virions/1L) of wild-type virus and low, but nonzero, levels
of mutant (approximately 0.5 virions/1L). All parameters are as in Table 1,
with p2 = 0&0451l−1 day−1 and Ci = 10 cells/1L. Both populations oscillate
around their averages, in an impulsive periodic orbit. B. The case C∗

1 < C∗
2 ,

with low-level vaccination. The mutant exists at high levels (approximately
191 virions/1L), but the wild type is eradicated. The mutant population
oscillates around its average, in an impulsive periodic orbit. All parameters
are as in the previous case, except that p2 = 0&041l−1 day−1. C. If the
vaccination frequency is increased, then we have eradication of both strains.
Parameters were the same as the previous case, except that the vaccine
strength was increased to 50 cells/1L.

If the vaccine is sufficiently strong, both strains are driven to
extinction, assuming perfect adherence (Figures 5C and 6C). In this
case, the total number of uninfected T cells dips briefly, but then
quickly returns to preinfection levels.
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FIGURE 6 Uninfected T cell counts corresponding to the three cases in
Figure 5. A. The case C∗

2 < C∗
1 , with low-level vaccination. B. The case C∗

1 <C∗
2 ,

with low-level vaccination. C. If the vaccination frequency is increased, then
the number of uninfected cells returns to maximal values.

Imperfect adherence may allow the mutant to persist at low, but
nonnegligible levels (Figure 7). In this case, the wild type is controlled,
while the mutant can rebound. Here, vaccination occurred every three
days, but every fourth vaccination was extended by two further days.
All other parameters are identical to those of Figure 5C.

Figure 8 shows that, in some situations when the vaccine is
less effective against mutant strains, the frequency of vaccine
administration becomes important. Figure 8 shows the densities of
wild-type and mutant viruses for 2-week, 10-day, and 1-week intervals
of vaccine adminstration. Wild-type and mutant viruses compete at
the beginning and eventually one of them becomes dominant. For
longer vaccine intervals (Figure 8, top), the wild type dominates. If
the frequency of vaccine administration is increased, due to higher
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FIGURE 7 Imperfect adherence may cause the mutant to persist. A. CTL
counts, using the same data as Figure 4B, except that every fourth
vaccination happened five days apart, rather than three. Inset: CTL counts
for perfect adherence. The CTL counts are barely affected by the treatment
interruption. B. Virion counts for the case of imperfect adherence. The
same data was used as Figure 5C, except for the treatment interruption.
Rather than eradication, the mutant now persists at low, but nonzero, levels
(approximately 7.4 virions/1L). Inset: Long-term behavior of the mutant.
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FIGURE 8 Frequency of vaccine administration plays an important role.
Dynamics of wild-type (solid curve) and mutant (dashed curve) viruses with
intervals of vaccine administration lasting fourteen days (top), ten days
(middle) and seven days (bottom). All parameters are as in Table 1, except
that p2 = 0&0151l−1 day−1, r2 = 1&5× 10−5 1l day−1 and n2 = 165&6day−1.

selection pressure of CTLs, the mutant virus dominates (Figure 8,
bottom).

For Figure 9, the data are identical to those of Figure 5A,
except that the moment of vaccination fluctuates. The variation in
vaccination times are drawn from a normally distributed random
variable, scaled so that the mean is the prescribed vaccination time
and the standard deviation is half a day. The fluctuations can give the
mutant a competitive advantage.

7. CONCLUSION

A CTL vaccine can theoretically eradicate both the wild-type and
resistant strains of the virus, if taken with sufficient frequency, at
regular intervals. However, if the vaccine is not taken at regular
intervals, then the total number of vaccinations that can be missed
is given by Eq. (68), and the total number of subsequent vaccinations
which must be taken is given by Eq. (78).
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FIGURE 9 Fluctuations in the vaccination time may reverse the competition.
A. CTL counts. The average is the same as Figure 4B, although the standard
deviation is not. B. Viral load, using the same data as Figure 5A and
perfect adherence, except that the vaccination time fluctuates with standard
deviation of 12 hours (one sixth of the vaccination interval). In this case, the
fluctuations result in the mutant outcompeting the wild type, reversing the
outcome.
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Approximating the time to peak by an instantaneous change is a
reasonable approximation (Smith? and Schwartz, 2008). While CTLs
themselves may be infected, CTLs are infected on a significantly
smaller scale than CD4+ T cells, so we ignore such effects here. We
assume homogeneity within the body so that every milliliter of blood
behaves the same. We have also ignored back mutation and assumed
that the mutant strain can be partially controlled by the vaccine.

The results depend critically upon the clearance rate p2 of the
mutant. When p2 → 0, C∗

2 → ., C∗ → ., and the right-hand side of
Eq. (66) approaches zero. If the mutant escape results in an inability
of the CTLs to sufficiently clear the mutant strain of the virus, then
the minimum vaccination interval may become too small for patients
to adhere to. In this case, the escape mutation may cause a vaccine
failure. If a vaccine cannot control the mutant at all, then it is of little
use once mutation occurs.

The total number of uninfected T cells at low levels of vaccination
when C∗

2 > C∗
1 is slightly higher (1,726 per microliter) than the total

number of uninfected T cells at low levels of vaccination when C∗
1 > C∗

2
(1,721 per microliter). Vaccination controls the wild type but not the
mutant when C∗

2 > C∗
1 , whereas vaccination fully controls neither the

wild type nor the mutant when C∗
1 > C∗

2 . When C∗
2 > C∗

1 , uninfected T
cells are only depleted by the mutant. Although the uninfected T cell
count is slightly higher in this case, this is not a desirable situation.
The development of resistance results in a lowered ability to control
the virus, as well as the likelihood of spreading the resistant strain to
new partners and subsequent development of further resistant stains
that cannot be controlled (Smith? et al., 2010).

It is better to have both higher uninfected T cell counts and lower
total viral load V1 + V2. These levels are affected by the presence of
the mutant virus and CTL escape. Rather than looking at total viral
levels, it is better to look at viruses one by one, as all viruses are
not equally harmful and not equally responsive to the CTL vaccine.
We thus evaluate the ability of the impulsive CTL vaccine to control
both virus strains. In the absence of clinical data, we offer a possible
starting point for new clinical tests to investigate CTL vaccines for
HIV therapy.

In the absence of vaccination, the results are analogous. With no
impulsive periodic orbits, there is a disease-free equilibrium (with
C = 0) and a mutant-only equilibrium. Both equilibria are unstable,
from Theorem 3.3.

We also examined the influence of the vaccination time.
Fluctuations in the vaccination time may reverse the expected
dominating strain (Figure 9). This can occur even if no vaccinations
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are missed. Because the intervals between vaccinations may be
significantly larger than those of antiretroviral drugs, the moment
of vaccination may vary substantially; a patient who is supposed to
receive a vaccine every Tuesday, but who sometimes receives the
vaccine on Monday or Wednesday, may develop resistance even if she
never misses a vaccination. This highlights the importance of rigorous
adherence not only to the number of vaccinations, but also to the
precise timing.

Requiring several thousand (or million) patients to report to
a health center at regular intervals for their CTL vaccine could
be an enormous drain on the health-care system. Consequently,
we recommend that such a vaccine should be available for self-
administration by patients, provided patients are fully informed about
the consequences of imperfect adherence.

A CTL vaccine can be advantageous in combating both wild-type
and mutant strains, even if only partially efficacious. The vaccination
pattern is crucial: sufficiently frequent vaccination, taken at precise
times, can control the virus. Interruptions in the vaccination schedule
for finite intervals need not be disastrous, so long as not too many
vaccinations are missed and that sufficient vaccinations are taken
subsequently. The timing of vaccinations is critical: too much variation
in the vaccination time may lead to the emergence of resistance, even
if no vaccinations are missed.
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