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A B S T R A C T

Drugs of abuse, such as opiates, have been widely associated with diminishing host-immune responses,
including suppression of HIV-specific antibody responses. In particular, periodic intake of the drugs of abuse
can result in time-varying periodic antibody level within HIV-infected individuals, consequently altering the
HIV dynamics. In this study, we develop a mathematical model to analyze the effects of periodic intake of
morphine, a widely used opiate. We consider two routes of morphine intake, namely, intravenous morphine
(IVM) and slow-release oral morphine (SROM), and integrate several morphine pharmacodynamic parameters
into HIV dynamics model. Using our non-autonomous model system we formulate the infection threshold,
𝑖, for global stability of infection-free equilibrium, which provides a condition for avoiding viral infection
in a host. We demonstrate that the infection threshold highly depends on the morphine pharmacodynamic
parameters. Such information can be useful in the design of antibody-based vaccines. In addition, we also
thoroughly evaluate how alteration of the antibody level due to periodic intake of morphine can affect the
viral load and the CD4 count in HIV infected drug abusers.

1. Introduction

Human Immunodeficiency Virus (HIV), the infectious agent for the
global AIDS epidemic, remains one of the major public health chal-
lenges. Over 33 million people worldwide currently live with the virus,
while 1.8 million new infections and 1 million AIDS-related deaths
are estimated to occur annually [1,2]. Among the people living with
HIV, the frequency of use and dependence on drugs of abuse, such as
opiates, is rapidly increasing [3,4]. As a result, drug abusers constitute
a large cohort within the HIV-infected population [3,4]. For example,
as estimated by the Center for Disease Control and Prevention [5], in
the US about one third of the total AIDS cases and the annual new HIV
cases were linked to the use of drugs of abuse. These statistics show
that there exists a significant public health burden due to the use of
drugs of abuse among HIV infected populations. Thus detailed studies
on HIV infection in drug abusers are in high demand to help design
HIV control strategies suitable for drug abusers.

It is known that HIV-infected drug abusers are at a greater risk of
suffering from higher viral load, rapid disease progression, and dimin-
ished host-immune responses [6–10]. Importantly, presence of drugs
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of abuse, such as morphine, can significantly reduce the HIV-specific
antibody levels in a host [7,8]. Since these antibodies are known to
play a role in controlling established HIV infection and preventing new
infections [11], it is critical to understand how drugs of abuse affect the
viral dynamics within HIV-infected individuals. Analysis of morphine-
altered antibody responses impacting viral dynamics is particularly
important for devising antibody mediated controls for drug abusers.

Mathematical modeling has been useful in understanding the dy-
namics of systems with virus infections and immune responses [12–17].
However, limited study has been done relating to modeling of HIV dy-
namics under conditioning of drugs of abuse [13,17]. In particular, us-
ing experimental data from simian immunodeficiency virus infection of
morphine-addicted macaques [7,8], we previously developed a mathe-
matical model to quantify effects of morphine on antibody responses
and virus dynamics [13]. While these studies [13,17] have offered
important results on relations among morphine conditioning, antibody
responses and viral dynamics, they have utilized constant morphine
conditioning that primarily represents experimental setting [7,8], in
which constant morphine within animal body is maintained. However,
in many cases, drugs of abuse are often taken periodically, including
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slow-release oral morphine (SROM) that is given to drug abusers for
treatment and/or during rehabilitation. In such periodic intake, the
concentration of drugs of abuse changes periodically over time resulting
in periodic changes of virus-specific antibody concentrations within a
host. Therefore, to accurately evaluate the effects of morphine condi-
tioning on antibody responses and virus dynamics, it is important to
consider time-varying morphine concentration, including the case in
which morphine is taken periodically.

In this study, we develop and analyze a model describing within-
host HIV dynamics under periodic morphine intake. We consider two
routes of morphine intake, namely, intravenous morphine (IVM) and
slow-release oral morphine (SROM), and integrate several morphine
pharmacodynamic parameters into HIV dynamics model. We thor-
oughly perform mathematical analysis of our non-autonomous model
system, and establish the local as well as global properties of the viral
dynamical system, including the formulation of infection threshold, 𝑖.
Furthermore, we evaluate how pharmacodynamics of morphine affect
the various aspects of viral dynamics in HIV-infected drug abusers.
As revealed by our results, the novel feature in our model, namely,
a more realistic time-dependent morphine implying time-dependent
antibody changes, can have significant impact on the viral dynamics as
well as on the determinants of infection persistence. These results can
provide new insights into the virus control through immune responses
under conditioning of drugs of abuse. Furthermore, the time-dependent
antibody changes provide a non-autonomous model, which requires
sophisticated mathematical techniques for its analysis. In particular,
the infection-free equilibrium of our model is determined by a two-
dimensional system, instead of commonly available viral dynamics
model with one dimensional infection-free equilibrium, and our full
model is a time-periodic system, which enhance further mathemati-
cal challenges. By using theory of monotone dynamical system, the
comparison principle and theory of uniform persistence, we are able
to establish a threshold result on the global dynamics of the pro-
posed HIV model in terms of infection threshold, 𝑖. Fairly rigorous
analysis presented in this paper can also be applied to other non-
autonomous systems, for which analytical techniques have not been
widely advanced in comparison to autonomous systems.

2. Model development

2.1. Modeling virus dynamics with effects of HIV-specific antibodies

We assume that target cells of HIV (CD4+ T cells) are generated at
a constant rate 𝜆 and die at per capita rate 𝑑. Based on the previously
established models [13,17], we divide target cells into two subpopu-
lations: 𝑇𝑙 (with lower susceptibility to infection due to low level of
co-receptor expression) and 𝑇ℎ (with higher susceptibility to infection
due to high level of co-receptor expression). These subpopulations
switch from 𝑇𝑙 to 𝑇ℎ and 𝑇ℎ to 𝑇𝑙 with the transition rates 𝑟 and
𝑞, respectively. Upon interaction with free virus (𝑉 ), target cells, 𝑇𝑙
and 𝑇ℎ, become infected (𝐼) at rates 𝛽𝑙 and 𝛽ℎ, respectively. 𝛿 and
𝑐 represent a per capita death rate of infected cells and a per capita
clearance rate of virions. Infected cells produce virus at a rate 𝑝 per
infected cell.

In our previous study [13], we established that the model with
two major effects of HIV-specific antibodies, namely reduction of virus-
specific infectivity and enhancement of virus clearance, best describes
experimental data. Following this result, we incorporate time-varying
efficacy, 𝛺𝐼 (𝑡), of virus-specific antibodies in the reduction of virus
infectivity and time-varying enhancement, 𝛺𝑐 (𝑡), of virus clearance due
to antibody binding to cell-free virus, into the viral dynamics model.
Consequently, the HIV specific-antibodies result in the following three
substitutions in our model: 𝛽𝑙 → [1−𝛺𝐼 (𝑡)]𝛽𝑙, 𝛽ℎ → [1−𝛺𝐼 (𝑡)]𝛽ℎ, and 𝑐 →
[𝑐 +𝛺𝑐 (𝑡)]. Note that we did not consider possible effects of antibodies
on suppressing infected cells because the model with this effect was not
supported by the experimental data from macaques under morphine

Fig. 1. Schematic diagram of the virus and antibody dynamics model.

conditioning [13]. Even though this effect is not incorporated here,
our model can easily be extended to include the possible suppression
of infected cells by antibodies as done in previous studies [13,18] and
our analytical techniques can be applied to the extended model.

Following the previous models [13,19] supported by the experi-
mental data, here we consider the antibody dynamics via an explicit
function, which is assumed to take into account all factors, including
effects from virus particles. In this approach, influence of virus on anti-
body response is indirectly captured through parameters in the explicit
form of antibody concentration profile. As done previously [13,19], we
define 𝛺𝐼 (𝑡) and 𝛺𝑐 (𝑡) as 𝛺𝐼 (𝑡) = 𝜂𝐴(𝑡)

1+𝜂𝐴(𝑡) and 𝛺𝑐 (𝑡) = 𝜎𝐴(𝑡), where
𝐴(𝑡) represents the time-varying HIV-specific antibody responses. More-
over, following the traditional drug-response mechanism, we model
the dependency of HIV-specific antibody responses on the morphine
concentration using the formula 𝐴(𝑡) =

(

1 − 𝑀(𝑡)𝑛
𝑀𝑛

ℎ+𝑀(𝑡)𝑛

)

, where 𝑀(𝑡)

represents morphine concentration at time 𝑡, 𝑀ℎ represents the mor-
phine concentration when antibody response is half of the maximum
response, and 𝑛 is the Hill coefficient. 𝐴(𝑡) is formulated in such a way
that its value lies between 0 and 1 with 𝐴(𝑡) = 0 for a very high
morphine concentration (i.e., 𝑀(𝑡) → ∞) and 𝐴(𝑡) = 1 (maximum)
in the absence of morphine (i.e., 𝑀(𝑡) = 0), consistent with the
previous experimental and theoretical results on the effect of morphine
on antibody responses [8,13]. An example of a graph describing the
dependence of antibody responses, 𝐴(𝑡), on the morphine concentration
is shown in Fig. 2(a). We describe the virus and antibody dynamics
using the following set of equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑇𝑙
𝑑𝑡 = 𝜆 + 𝑞𝑇ℎ − 𝑑𝑇𝑙 − 𝑟𝑇𝑙 − [1 −𝛺𝐼 (𝑡)]𝛽𝑙𝑉 𝑇𝑙 ,

𝑑𝑇ℎ
𝑑𝑡 = 𝑟𝑇𝑙 − 𝑑𝑇ℎ − 𝑞𝑇ℎ − [1 −𝛺𝐼 (𝑡)]𝛽ℎ𝑉 𝑇ℎ,

𝑑𝐼
𝑑𝑡 = [1 −𝛺𝐼 (𝑡)]𝛽𝑙𝑉 𝑇𝑙 + [1 −𝛺𝐼 (𝑡)]𝛽ℎ𝑉 𝑇ℎ − 𝛿𝐼,

𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − 𝑐𝑉 −𝛺𝑐 (𝑡)𝑉 ,

𝑇𝑙(0) = 𝑇𝑙0, 𝑇ℎ(0) = 𝑇ℎ0, 𝐼(0) = 𝐼0, 𝑉 (0) = 𝑉0,

(1)

where

𝛺𝐼 (𝑡) =
𝜂𝐴(𝑡)

1 + 𝜂𝐴(𝑡)
, 𝛺𝑐 (𝑡) = 𝜎𝐴(𝑡), 𝐴(𝑡) = 1 −

𝑀(𝑡)𝑛

𝑀𝑛
ℎ +𝑀(𝑡)𝑛

.

The schematic diagram of the model is presented in Fig. 1.

2.2. Modeling periodic morphine intake and pharmacodynamics

Since morphine, or drug of abuse in general, is often taken periodi-
cally, in our model we assume that the morphine concentration, 𝑀(𝑡),
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is periodic function of period 𝜏, i.e., 𝑀(𝑡) = 𝑀(𝑡+𝜏). As a consequence,
time-varying parameters 𝛺𝐼 (𝑡) and 𝛺𝑐 (𝑡) become periodic functions of
period 𝜏, i.e., 𝛺𝐼 (𝑡) = 𝛺𝐼 (𝑡 + 𝜏) and 𝛺𝑐 (𝑡) = 𝛺𝑐 (𝑡 + 𝜏), respectively. We
consider two common routes of morphine intake: intravenous morphine
(IVM) and slow release oral morphine (SROM). The models for pharma-
codynamics of morphine, time-varying morphine profile, and periodic
intake via these two routes are describes below.

Intravenous morphine (IVM). In this case, morphine is directly in-
jected into the blood stream. One reason why IVM may be preferred
by drug abusers is that its direct administration into the circulation
provides a rapid effect [20]. A previous study on pharmacokinetics and
pharmacodynamics of opioids [21] has shown that the concentration
profile of drugs administered via intravenous route is best described
by an exponential decay function. Thus, we consider a function of the
form 𝑀(𝑡) = 𝑎0𝑒−𝑏1𝑡 to explain the dynamics of intravenous morphine
concentration for a period of single intake. Therefore, for a periodic
intake of IVM we model the morphine concentration as

𝑀(𝑡) = 𝑎0𝑒
−𝑏1(𝑡−𝑡𝑘), 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑘 = 0, 1, 2,… (2)

where, the period 𝜏 = 𝑡𝑘+1 − 𝑡𝑘 represents the time interval between
two consecutive morphine intakes, 𝑎0 represents the morphine dose,
and 𝑏1 denotes the decay rate. Note that 𝑡1∕2 = ln(2)∕𝑏1 gives the half-
life of morphine. Since the half-life of morphine is short as measured in
the experiment [22], we ignored potential residual morphine from the
previous period so that each interval begins with the initial morphine
concentration of 𝑎0. To support our assumption, we also computed
the morphine concentration using residual morphine effect and found
almost no difference on the net concentration. A graph describing
the periodic morphine profile, 𝑀(𝑡), in the case of IVM is shown in
Fig. 2(b).

Slow-release oral morphine (SROM). In this case, morphine is taken
orally. SROM can be used as a maintenance pharmacotherapy treat-
ment for opioid-dependent individuals who respond poorly to other
available maintenance treatments [23]. It has also been reported that
SROM may be associated with reduced opioid craving [24–30]. More-
over, the use of SROM among HIV-infected persons may present an
additional safety advantage due to its lower risk with interactions with
other drugs [31]. In using the SROM as a maintenance treatment, it
is critical to identify the right balance between the need for the drug
and its addictiveness. In oral morphine intake [32], the concentration
of morphine in the blood slowly increases and then decreases after
it reaches a peak. As supported by the experimental data [32], this
phenomenon can approximately be captured using a function of the
form

𝑀(𝑡) = 𝑀0 + 𝑎 sin( 2𝜋
𝜏
𝑡 + 𝑏), (3)

where 𝑀0 represents the mean level of morphine, 𝑎 denotes the am-
plitude, and 𝑏 represents the phase shift in the function. A graph
describing the periodic morphine profile, 𝑀(𝑡), in the case of SROM
is shown in Fig. 2(c).

3. Mathematical analysis

In the rest of this paper, we shall consider the model system (1),
where 𝛺𝐼 (𝑡) and 𝛺𝑐 (𝑡) are 𝜏-periodic functions. We first show that R4

+
is positively invariant for (1). For any (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ R4

+, it follows
from Theorem 5.2.1 in [33] that system (1) admits a unique local non-
negative solution (𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) ∈ R4

+ through the initial value
(𝑇𝑙(0), 𝑇ℎ(0), 𝐼(0), 𝑉 (0)) = (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0). Let the total cell population
be 𝑁(𝑡), i.e.,

𝑁(𝑡) = 𝑇𝑙(𝑡) + 𝑇ℎ(𝑡) + 𝐼(𝑡). (4)

Then it follows from the first three equations of (1) that
𝑑𝑁(𝑡)
𝑑𝑡

= 𝜆 − 𝑑𝑇𝑙 − 𝑑𝑇ℎ − 𝛿𝐼 ≤ 𝜆 − 𝑑min𝑁(𝑡), (5)

where 𝑑min = min{𝑑, 𝛿}. Here, we can take 𝑑min = 𝑑 as the life-span
of infected cell (∼ 1 day) is extremely shorter than the life-span of
uninfected cell (∼ 100 days), i.e., 𝑑 ≪ 𝛿. By the comparison principle,
we see that lim sup𝑡→∞ 𝑁(𝑡) ≤ 𝜆

𝑑 , that is, 𝑁(𝑡) is ultimately bounded.
By the positivity of solutions of (1), it follows that 𝑇𝑙(𝑡), 𝑇ℎ(𝑡), and 𝐼(𝑡)
are ultimately bounded. Then there exist a 𝑡0 > 0 and 𝜒 > 0 such that
𝐼(𝑡) ≤ 𝜒, ∀ 𝑡 ≥ 𝑡0. In view of the fourth equation of (1), we see that
𝑑𝑉
𝑑𝑡

≤ 𝑝𝜒 − 𝑐𝑉 , ∀ 𝑡 ≥ 𝑡0.

The above inequality and the comparison principle imply that
lim sup𝑡→∞ 𝑉 (𝑡) ≤ 𝑝𝜒

𝑐 , that is, 𝑉 (𝑡) is ultimately bounded.
From the above discussion and Theorem 3.4.8 in [34], we have the

following result:

Lemma 1. R4
+ is positively invariant for system (1) and the system (1)

admits a unique and bounded solution with the initial value in R4
+. Further,

the system (1) admits a connected global attractor on R4
+ which attracts all

positive orbits in R4
+.

3.1. Infection threshold (𝑖)

In this section we use our periodic model system (1) to formulate
an infection threshold, 𝑖, which provides a condition for an infection
to die out or persist. Bacaër and Guernaoui [35] proposed a general
definition of such threshold for a vector-borne disease model with
seasonality in periodic habitats. Similarly, Wang and Zhao [36] fur-
ther introduced a computational formula for periodic compartmental
epidemic models and showed that it is a threshold parameter for the
local stability of the disease-free periodic solution. Here, we use a
similar approach developed by Wang and Zhao [36] and introduce the
infection threshold, 𝑖, for periodic morphine intake system (1) of virus
and antibody dynamics.

We first determine the infection-free equilibrium, 𝐸0. To this end,
we put 𝐼 = 𝑉 = 0 in system (1) and we arrive at the following system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑇𝑙
𝑑𝑡 = 𝜆 + 𝑞𝑇ℎ − (𝑑 + 𝑟)𝑇𝑙 ,
𝑑𝑇ℎ
𝑑𝑡 = 𝑟𝑇𝑙 − (𝑑 + 𝑞)𝑇ℎ,

𝑇𝑙(0) = 𝑇𝑙0, 𝑇ℎ(0) = 𝑇ℎ0.

(6)

It is easy to obtain that

(𝑇 ∗
𝑙 , 𝑇

∗
ℎ ) =

(

𝜆(𝑑 + 𝑞)
𝑑(𝑑 + 𝑞 + 𝑟)

, 𝜆𝑟
𝑑(𝑑 + 𝑞 + 𝑟)

)

(7)

is the unique positive equilibrium of system (6). Since system (6) is
cooperative (see, e.g., [33]) and it admits a unique positive equilibrium
(𝑇 ∗

𝑙 , 𝑇
∗
ℎ ), we obtain the following result related to the global stability of

(𝑇 ∗
𝑙 , 𝑇

∗
ℎ ) (see, e.g., [37]).

Lemma 2. System (6) admits a unique positive equilibrium (𝑇 ∗
𝑙 , 𝑇

∗
ℎ ) which

is globally attractive in R2
+, that is, for any (𝑇𝑙(0), 𝑇ℎ(0)) ∈ R2

+, we have

lim
𝑡→∞

(𝑇𝑙(𝑡), 𝑇ℎ(𝑡)) = (𝑇 ∗
𝑙 , 𝑇

∗
ℎ ).

In view of Lemma 2, the infection-free equilibrium, 𝐸0, takes the
following form

𝐸0 =
(

𝜆(𝑑 + 𝑞)
𝑑(𝑑 + 𝑞 + 𝑟)

, 𝜆𝑟
𝑑(𝑑 + 𝑞 + 𝑟)

, 0, 0
)

.

The equations for the infected cells and virus compartments of the
linearized system at the infection-free equilibrium, 𝐸0, take the form

⎧

⎪

⎨

⎪

⎩

𝑑𝐼
𝑑𝑡 = −𝛿𝐼 + 𝜆[1−𝛺𝐼 (𝑡)]

𝑑(𝑑+𝑞+𝑟) [𝛽𝑙(𝑑 + 𝑞) + 𝛽ℎ𝑟]𝑉 ,

𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − [𝑐 +𝛺𝑐 (𝑡)]𝑉 .

(8)

We now introduce two matrices

 (𝑡) =

(

0 𝜆[1−𝛺𝐼 (𝑡)]
𝑑(𝑑+𝑞+𝑟) [𝛽𝑙(𝑑 + 𝑞) + 𝛽ℎ𝑟]

0 0

)

,

3
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Fig. 2. (a) HIV-specific antibody response, 𝐴(𝑡), as a function of morphine concentration, 𝑀(𝑡); (b) Periodic morphine concentration profile, 𝑀(𝑡), in the case of IVM; and (c)
Periodic morphine concentration profile, 𝑀(𝑡), in the case of SROM.

(𝑡) =
(

𝛿 0
−𝑝 𝑐 +𝛺𝑐 (𝑡)

)

.

For a given 𝜏-periodic function V(𝑡), we will use 𝛷V(⋅)(𝑡) to represent
the monodromy matrix of the linear 𝜏-periodic differential system
𝑑𝑧(𝑡)
𝑑𝑡 = V(𝑡)𝑧, and we use 𝜌(𝛷V(⋅)(𝜏)) to denote the spectral radius of

𝛷V(⋅)(𝜏).
We now assume that 𝑌 (𝑡, 𝑠), 𝑡 ≥ 𝑠 is the evolution operator of the

linear 𝜏-periodic system
𝑑𝑦
𝑑𝑡

= −(𝑡)𝑦. (9)

That is, for each 𝑠 ∈ R, the 2 × 2 matrix 𝑌 (𝑡, 𝑠) satisfies
𝑑
𝑑𝑡

𝑌 (𝑡, 𝑠) = −(𝑡)𝑌 (𝑡, 𝑠) ∀𝑡 ≥ 𝑠, 𝑌 (𝑠, 𝑠) = 𝐼,

where 𝐼 is the 2 × 2 identity matrix. Then the monodromy matrix of
(9), 𝛷− (𝑡), equals 𝑌 (𝑡, 0), 𝑡 ≥ 0.

Let 𝜙(𝑠), 𝜏-periodic in 𝑠, be the initial distribution of virus parti-
cles. Then  (𝑠)𝜙(𝑠) is the rate of new infected cells produced by the
virus particles which were introduced at time 𝑠. Given 𝑡 ≥ 𝑠, then
𝑌 (𝑡, 𝑠) (𝑠)𝜙(𝑠) provides the distribution of those virus particles which
were newly produced by infected cells at time 𝑠 and remain in the virus
compartment at time 𝑡.

Let 𝐶𝜏 be the ordered Banach space of 𝜏-periodic functions from
R to R2 with the maximum norm ‖.‖ and the positive cone 𝐶+

𝜏 ∶=
{

𝜙 ∈ 𝐶𝜏 ∶ 𝜙(𝑡) ≥ 0 ∀𝑡 ∈ R}. We now define a linear operator  ∶ 𝐶𝜏 →

𝐶𝜏 by

(𝜙)(𝑡) = ∫

∞

0
𝑌 (𝑡, 𝑡 − 𝑎) (𝑡 − 𝑎)𝜙(𝑡 − 𝑎), ∀𝑡 ∈ R, 𝜙 ∈ 𝐶𝜏 .

Here, ∫ ∞
0 𝑌 (𝑡, 𝑡 − 𝑎) (𝑡 − 𝑎)𝜙(𝑡 − 𝑎)𝑑𝑎 = ∫ 𝑡

−∞ 𝑌 (𝑡, 𝑠) (𝑠)𝜙(𝑠)𝑑𝑠 gives the
distribution of accumulated new viruses at time 𝑡 produced due to all
those viruses 𝜙(𝑠) at times before 𝑡. Therefore,  is the next infection
operator [36,38], and we define infection threshold as 𝑖 = 𝜌(), the
spectral radius of .

As in Wang and Zhao [36] and Liu, Zhao and Zhou [39], we let
(𝑡, 𝑠, 𝜃), 𝑡 ≥ 𝑠, 𝑠 ∈ R be the monodromy matrix of the linear 𝜏-periodic
system on R2

𝑑𝑤
𝑑𝑡

=
(

−(𝑡) +  (𝑡)
𝜃

)

𝑤, 𝑡 ∈ R, (10)

with parameter 𝜃 ∈ (0,∞). By Theorem 2.1 of [36], we have the
following results.

Lemma 3. The following statements hold

(i) If 𝜌((𝜏, 0, 𝜃)) = 1 has a positive solution 𝜃0, then 𝜃0, is an eigenvalue
of operator , and hence 𝑖 > 0.

(ii) If 𝑖 > 0, then 𝜃 = 𝑖 is the unique solution of 𝜌((𝜏, 0, 𝜃)) = 1.

(iii) 𝑖 = 0 if and only if 𝜌((𝜏, 0, 𝜃)) < 1 for all 𝜃 > 0.

By Theorem 2.2 in [36], we further have the following result:

Lemma 4 (see Theorem 2.2 in [36]). The following statements hold.

(i) 𝑖 = 1 if and only if 𝜌(𝛷 (⋅)−(⋅)(𝜏)) = 1;
(ii) 𝑖 > 1 if and only if 𝜌(𝛷 (⋅)−(⋅)(𝜏)) > 1;

(iii) 𝑖 < 1 if and only if 𝜌(𝛷 (⋅)−(⋅)(𝜏)) < 1.

Thus, the disease-free steady state 𝐸0 is locally asymptotically stable if
𝑖 < 1, and unstable if 𝑖 > 1.

Homogeneous (constant morphine) case. We now briefly mention
that 𝑖 formulated above can also recover the basic reproduction
number, 𝑅0, that we derived previously for the dynamics when constant
morphine is maintained [13]. In the homogeneous (constant morphine)
case, 𝛺𝐼 (𝑡) ≡ 𝛺𝐼 and 𝛺𝑐 (𝑡) ≡ 𝛺𝑐 are both constants. Then  (𝑡) ≡  and
(𝑡) ≡  become two constant matrices. Substituting constant matrices
 and  , we obtain (see also [36,40])

𝑖 = 𝜌() = 𝜌(−1).

By computations, we can obtain that

−1 =

(

𝑝
𝛿(𝑐+𝛺𝑐 )

12
1

𝑐+𝛺𝑐
12

0 0

)

,

where 12 = 𝜆[1−𝛺𝐼 ]
𝑑(𝑑+𝑞+𝑟) [𝛽𝑙(𝑑 + 𝑞) + 𝛽ℎ𝑟]. Then 𝑖 can be expressed as the

following explicit form

𝑖 =
𝑝

𝛿(𝑐 +𝛺𝑐 )
12.

Here, 𝑖 = 𝑅0, which is the basic reproduction number [13] that we
derived using the second generation matrix method [40] for constant
morphine case.

3.2. Infection threshold mediated virus dynamics

In this section, we show that whether the virus infection is avoided/
eradicated or infection persists within a host can be determined by the
sign of 𝑖 − 1.

Let X = R4
+. Suppose 𝑃 ∶ X → X is the Poincaré map associated

with system (1), that is,

𝑃 (𝑥0) = 𝑢(𝜏, 𝑥0), ∀ 𝑥0 ∶= (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X,

where 𝑢(𝑡, 𝑥0) is the unique solution of system (1) with 𝑢(0, 𝑥0) = 𝑥0.
Then we can obtain

𝑃 𝑛(𝑥0) = 𝑢(𝑛𝜏, 𝑥0), ∀ 𝑛 ≥ 0.

4
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Let

X0 ∶= {(𝑇𝑙 , 𝑇ℎ, 𝐼, 𝑉 ) ∈ X ∶ 𝐼 > 0 and 𝑉 > 0},

and

𝜕X0 ∶= X∖X0 = {(𝑇𝑙 , 𝑇ℎ, 𝐼, 𝑉 ) ∈ X ∶ 𝐼 = 0 or 𝑉 = 0}.

Lemma 5. Assume that (𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) is a solution of the system
(1) with initial value (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0. Then

(𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) ≫ 0, ∀ 𝑡 > 0.

Proof. Given any initial value (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0. In view of the first
equation of system (1), it follows that

𝑇𝑙(𝑡) = 𝑒− ∫ 𝑡
0 𝑏(𝑠1)𝑑𝑠1

[

∫

𝑡

0
𝑒∫

𝑠2
0 𝑏(𝑠1)𝑑𝑠1𝑎(𝑠2)𝑑𝑠2 + 𝑇𝑙0

]

, (11)

where

𝑎(𝑡) ∶= 𝜆 + 𝑞𝑇ℎ(𝑡) ≥ 𝜆 > 0, (12)

and

𝑏(𝑡) ∶= 𝑑 + 𝑟 + [1 −𝛺𝐼 (𝑡)]𝛽𝑙𝑉 (𝑡). (13)

Thus, 𝑇𝑙(𝑡) > 0, ∀ 𝑡 > 0. In view of the second equation of system (1),
it follows that

𝑇ℎ(𝑡) = 𝑒− ∫ 𝑡
0 �̂�(𝑠1)𝑑𝑠1

[

∫

𝑡

0
𝑒∫

𝑠2
0 �̂�(𝑠1)𝑑𝑠1 �̂�(𝑠2)𝑑𝑠2 + 𝑇ℎ0

]

, (14)

where

�̂�(𝑡) ∶= 𝑟𝑇𝑙(𝑡) > 0, (15)

and

�̂�(𝑡) ∶= 𝑑 + 𝑞 + [1 −𝛺𝐼 (𝑡)]𝛽ℎ𝑉 (𝑡). (16)

Thus, 𝑇ℎ(𝑡) > 0, ∀ 𝑡 > 0.
Treating Theorem 4.1.1 of [33] as generalized to nonautonomous

systems, the irreducibility of the cooperative matrix
(

−𝛿 [1 −𝛺𝐼 (𝑡)][𝛽𝑙𝑇𝑙(𝑡) + 𝛽ℎ𝑇ℎ(𝑡)]
𝑝 −𝑐 −𝛺𝑐 (𝑡)

)

(17)

implies that

(𝐼(𝑡), 𝑉 (𝑡))𝑇 ≫ 0, ∀ 𝑡 > 0. (18)

This completes the proof. □

Lemma 6. Let 𝑖 > 1. Then there exists 𝛿0 > 0 such that for any
(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0 with

‖(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) − 𝐸0‖ ≤ 𝛿0,

we have

lim sup
𝑛→∞

‖𝑃 𝑛(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) − 𝐸0‖ ≥ 𝛿0.

Proof. Assume that 𝑖 > 1. Then Lemma 4 implies that
𝜌(𝛷 (⋅)−(⋅)(𝜏)) > 1. Thus, we can choose 𝜉0 > 0 small enough such that
𝜌(𝛷𝐺𝜉0 (⋅)

(𝜏)) > 1, where

𝐺𝜉0 (𝑡) =
(

−𝛿 [1 −𝛺𝐼 (𝑡)]
[

𝛽𝑙(𝑇 ∗
𝑙 − 𝜉0) + 𝛽ℎ(𝑇 ∗

ℎ − 𝜉0)
]

𝑝 −[𝑐 +𝛺𝑐 (𝑡)]

)

.

By the continuity of the solutions with respect to the initial values,
there exists a 𝛿0 > 0 such that for all (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0 with

‖(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) − 𝐸0‖ ≤ 𝛿0,

there holds ‖𝑢(𝑡, (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0)) − 𝑢(𝑡, 𝐸0)‖ < 𝜉0, ∀ 𝑡 ∈ [0, 𝜏].
We now prove the following claim.

lim sup
𝑛→∞

‖𝑃 𝑛(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) − 𝐸0‖ ≥ 𝛿0.

Assume, by contradiction, that the above claim does not hold. Then we
have

lim sup
𝑛→∞

‖𝑃 𝑛(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) − 𝐸0‖ < 𝛿0,

for some (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0. Without loss of generality, we assume
that

‖𝑃 𝑛(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) − 𝐸0‖ < 𝛿0, ∀ 𝑛 ≥ 0.

It follows that

‖𝑢(𝑡, 𝑃 𝑛(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0)) − 𝑢(𝑡, 𝐸0)‖ < 𝜉0, ∀ 𝑡 ∈ [0, 𝜏], 𝑛 ≥ 0.

For any 𝑡 ≥ 0, let 𝑡 = 𝑚𝜏 + 𝑡′, where 𝑡′ ∈ [0, 𝜏), and 𝑚 is the largest
integer less than or equal to 𝑡

𝜏 . Therefore, we have

‖𝑢(𝑡, (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0)) − 𝑢(𝑡, 𝐸0)‖

= ‖𝑢(𝑡′, 𝑃𝑚(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0)) − 𝑢(𝑡′, 𝐸0)‖ < 𝜉0. (19)

Note that

(𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) = 𝑢(𝑡, (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0))

and 𝑢(𝑡, 𝐸0) = 𝐸0, ∀ 𝑡 ≥ 0. It then follows from (19) that for all 𝑡 ≥ 0,
we have

𝑇 ∗
𝑙 + 𝜉0 > 𝑇𝑙(𝑡) > 𝑇 ∗

𝑙 − 𝜉0 > 0, 𝑇 ∗
ℎ + 𝜉0 > 𝑇ℎ(𝑡) > 𝑇 ∗

ℎ − 𝜉0 > 0.

From the third and fourth equations in (1), it follows that

⎧

⎪

⎨

⎪

⎩

𝑑𝐼
𝑑𝑡 ≥ −𝛿𝐼 + [1 −𝛺𝐼 (𝑡)]

[

𝛽𝑙(𝑇 ∗
𝑙 − 𝜉0) + 𝛽ℎ(𝑇 ∗

ℎ − 𝜉0)
]

𝑉 , 𝑡 > 0,
𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − [𝑐 +𝛺𝑐 (𝑡)]𝑉 , 𝑡 > 0.

(20)

Since (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0, it follows from Lemma 5 that

(𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) ≫ 0, ∀ 𝑡 > 0.

Thus, we may fix a 𝑡0 > 0 such that (𝐼(𝑡0), 𝑉 (𝑡0)) ≫ 0. Now, we consider
the following auxiliary system

⎧

⎪

⎨

⎪

⎩

𝑑𝐼
𝑑𝑡 = −𝛿𝐼 + [1 −𝛺𝐼 (𝑡)]

[

𝛽𝑙(𝑇 ∗
𝑙 − 𝜉0) + 𝛽ℎ(𝑇 ∗

ℎ − 𝜉0)
]

𝑉 , 𝑡 > 0,
𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − [𝑐 +𝛺𝑐 (𝑡)]𝑉 , 𝑡 > 0.

(21)

According to Lemma 2.1 in [41], there exists a positive, 𝜏-periodic
function (𝐼(𝑡), 𝑉 (𝑡))𝑇 such that �̌�𝑒�̌�(𝑡−𝑡0)(𝐼(𝑡), 𝑉 (𝑡))𝑇 is a solution of
system (21), where �̌� ∶= 1

𝜏 ln(𝜌(𝛷𝐺𝜉0 (⋅)
(𝜏))) > 0, due to the fact

𝜌(𝛷𝐺𝜉0 (⋅)
(𝜏)) > 1. Here, we also take �̌� satisfying

(𝐼(𝑡0), 𝑉 (𝑡0)) ≥ �̌�(𝐼(𝑡0), 𝑉 (𝑡0))𝑇 .

The standard comparison theorem (see, e.g., Theorem B.1 in [42])
implies that

(𝐼(𝑡), 𝑉 (𝑡)) ≥ �̌�𝑒�̌�(𝑡−𝑡0)(𝐼(𝑡), 𝑉 (𝑡))𝑇 , ∀ 𝑡 ≥ 𝑡0.

In particular, there exists 𝑛1 such that

(𝐼(𝑛𝜏), 𝑉 (𝑛𝜏)) ≥ �̌�𝑒�̌�(𝑛𝜏−𝑡0)(𝐼(𝑛𝜏), 𝑉 (𝑛𝜏))𝑇 , ∀ 𝑛 ≥ 𝑛1.

Since �̌� > 0, it follows that 𝐼(𝑛𝜏) → ∞ and 𝑉 (𝑛𝜏) → ∞ as 𝑛 → ∞. This
contradiction completes the proof. □

The following result establishes that 𝑖 is a threshold index deter-
mining whether infection is avoided/eradicated or persists.

Theorem 1. The following statements hold.

(i) If 𝑖 < 1, then the unique infection-free equilibrium, 𝐸0 = (𝑇 ∗
𝑙 , 𝑇

∗
ℎ , 0,

0) is globally asymptotically stable for system (1) in the sense that

lim
𝑡→∞

(𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) = 𝐸0;

5



J.M. Mutua, F.-B. Wang and N.K. Vaidya Mathematical Biosciences 326 (2020) 108395

(ii) If 𝑖 > 1, there exists an 𝜁 > 0 such that for any solution
(𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) with initial value (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0 satisfies

lim inf
𝑡→∞

𝐼(𝑡) ≥ 𝜁, lim inf
𝑡→∞

𝑉 (𝑡) ≥ 𝜁.

Further, system (1) admits at least one positive 𝜏-periodic solution

(�̂�𝑙(𝑡), �̂�ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)).

Proof. Part (i). Assume that 𝑖 < 1. Then Lemma 4 implies that
𝜌(𝛷 (⋅)−(⋅)(𝜏)) < 1. Thus, we can choose 𝑗0 > 0 small enough such that
𝜌(𝛷𝐺𝑗0 (⋅)

(𝜏)) < 1, where

𝐺𝑗0 (𝑡) =
(

−𝛿 [1 −𝛺𝐼 (𝑡)]
[

𝛽𝑙(𝑇 ∗
𝑙 + 𝑗0) + 𝛽ℎ(𝑇 ∗

ℎ + 𝑗0)
]

𝑝 −[𝑐 +𝛺𝑐 (𝑡)]

)

.

From the first and the second equations of system (1), we have

⎧

⎪

⎨

⎪

⎩

𝑑𝑇𝑙
𝑑𝑡 ≤ 𝜆 + 𝑞𝑇ℎ − (𝑑 + 𝑟)𝑇𝑙 ,
𝑑𝑇ℎ
𝑑𝑡 ≤ 𝑟𝑇𝑙 − (𝑑 + 𝑞)𝑇ℎ.

(22)

By comparison principle, system (22), and Lemma 2, we see that

lim sup
𝑡→∞

(𝑇𝑙(𝑡), 𝑇ℎ(𝑡)) ≤ (𝑇 ∗
𝑙 , 𝑇

∗
ℎ ).

Therefore, there exists 𝑡𝑗0 such that 𝑇𝑙(𝑡) ≤ 𝑇 ∗
𝑙 + 𝑗0, 𝑇ℎ(𝑡) ≤ 𝑇 ∗

ℎ + 𝑗0, ∀𝑡 ≥
𝑡𝑗0 . Then from the third and the fourth equations of system (1), we have

⎧

⎪

⎨

⎪

⎩

𝑑𝐼
𝑑𝑡 ≤ −𝛿𝐼 + [1 −𝛺𝐼 (𝑡)]

[

𝛽𝑙(𝑇 ∗
𝑙 + 𝑗0) + 𝛽ℎ(𝑇 ∗

ℎ + 𝑗0)
]

𝑉 , 𝑡 ≥ 𝑡𝑗0 ,
𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − [𝑐 +𝛺𝑐 (𝑡)]𝑉 , 𝑡 ≥ 𝑡𝑗0 .

(23)

Now, we consider the following auxiliary system

⎧

⎪

⎨

⎪

⎩

𝑑𝐼
𝑑𝑡 = −𝛿𝐼 + [1 −𝛺𝐼 (𝑡)]

[

𝛽𝑙(𝑇 ∗
𝑙 + 𝑗0) + 𝛽ℎ(𝑇 ∗

ℎ + 𝑗0)
]

𝑉 , 𝑡 ≥ 0,
𝑑𝑉
𝑑𝑡 = 𝑝𝐼 − [𝑐 +𝛺𝑐 (𝑡)]𝑉 , 𝑡 ≥ 0.

(24)

According to Lemma 2.1 in [41], there exists a positive, 𝜏-periodic
function (𝐼(𝑡), 𝑉 (𝑡))𝑇 such that 𝑒𝛩𝑡(𝐼(𝑡), 𝑉 (𝑡))𝑇 is a solution of system
(24), where 𝛩 ∶= 1

𝜏 ln(𝜌(𝛷𝐺𝑗0 (⋅)
(𝜏))) < 0, due to the fact 𝜌(𝛷𝐺𝑗0 (⋅)

(𝜏)) <
1. For any non-negative solution (𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡))𝑇 of system (1),
we can choose a sufficiently large 𝑚 > 0 satisfying (𝐼(𝑡𝑗0 ), 𝑉 (𝑡𝑗0 ))

𝑇 ≤
𝑚(𝐼(𝑡𝑗0 ), 𝑉 (𝑡𝑗0 ))

𝑇 . Clearly, 𝑚𝑒𝛩(𝑡−𝑡𝑗0 )(𝐼(𝑡), 𝑉 (𝑡))𝑇 is also a solution of (24),
for all 𝑡 ≥ 𝑡𝑗0 . By the comparison principle (see [33,42]), we get

(𝐼(𝑡), 𝑉 (𝑡))𝑇 ≤ 𝑚𝑒𝛩(𝑡−𝑡𝑗0 )(𝐼(𝑡), 𝑉 (𝑡))𝑇 , ∀𝑡 ≥ 𝑡𝑗0 .

Since 𝛩 < 0, it follows that (𝐼(𝑡), 𝑉 (𝑡))𝑇 → (0, 0)𝑇 as 𝑡 → ∞. Thus, (𝑇𝑙 , 𝑇ℎ)
in system (1) is asymptotic to system (6). By the theory of asymptot-
ically periodic semiflows (see, e.g., [43] or section 3.2 of [44]) and
Lemma 2, it follows that lim𝑡→∞(𝑇𝑙(𝑡), 𝑇ℎ(𝑡)) = (𝑇 ∗

𝑙 , 𝑇
∗
ℎ ). This completes

the proof of Part (i).
Part (ii). We next consider the case where 𝑖 > 1. From Lemma 1, it

follows that the discrete-time system {𝑃 𝑛}𝑛≥0 admits a global attractor
in X. Now we prove that {𝑃 𝑛}𝑛≥0 is uniformly persistent with respect
to (X0, 𝜕X0). By Lemma 5, it follows that X0 and 𝜕X0 are positively
invariant under the solution flow of (1). Clearly, X0 ∪ 𝜕X0 = X,
X0 ∩ 𝜕X0 = ∅, and 𝜕X0 is relatively closed in X.

Let

𝑀𝜕 = {(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ 𝜕X0 ∶ 𝑃 𝑛(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ 𝜕X0, ∀ 𝑛 ≥ 0}.

Next, we show that

𝑀𝜕 ∶= {(𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X ∶, 𝐼0 = 𝑉0 = 0}. (25)

For the establishment of (25), we note that it suffices to prove that for
any (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ 𝑀𝜕 and for any 𝑚 ≥ 0, we have 𝐼(𝑚𝜏) = 𝑉 (𝑚𝜏) =
0. If it is not true, then there exists 𝑚1 ≥ 0 such that (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈
𝑀𝜕 with

(𝐼(𝑚1𝜏), 𝑉 (𝑚1𝜏)) ≠ (0, 0).

Then the irreducibility of the cooperative matrix (17) implies that

(𝐼(𝑚𝜏), 𝑉 (𝑚𝜏))𝑇 ≫ (0, 0), ∀ 𝑚 > 𝑚1.

This contradicts the definition of 𝑀𝜕 , and hence, (25) is true.
Obviously, there is a unique fixed point of 𝑃 in 𝑀𝜕 , which is 𝐸0 =

(𝑇 ∗
𝑙 , 𝑇

∗
ℎ , 0, 0). If (𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) is a nonnegative solution of system

(1) initiating from 𝑀𝜕 , it is not hard to see that (𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡))
approaches 𝐸0 as 𝑡 approaches ∞, that is, every orbit of 𝑃 in 𝑀𝜕
approaches to {𝐸0}.

In view of Lemma 6, we see that {𝐸0} is an isolated invariant set
in X and 𝑊 𝑠(𝐸0) ∩ X0 = ∅, where 𝑊 𝑠(𝐸0) is the stable set of 𝐸0,
and {𝐸0} is acyclic in 𝑀𝜕 . By Theorem 1.3.1 in [44], it follows that
{𝑃 𝑛}𝑛≥0 is uniformly persistent with respect to (X0, 𝜕X0). By Theorem
3.1.1 in [44], the solutions of system (1) are uniformly persistent with
respect to (X0, 𝜕X0), that is, there exists an 𝜁 > 0 such that for any
solution (𝑇𝑙(𝑡), 𝑇ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) with initial value (𝑇𝑙0, 𝑇ℎ0, 𝐼0, 𝑉0) ∈ X0
satisfies

lim inf
𝑡→∞

𝐼(𝑡) ≥ 𝜁, lim inf
𝑡→∞

𝑉 (𝑡) ≥ 𝜁.

Furthermore, Theorem 1.3.6 in [44] implies that 𝑃 has a fixed point

(�̂�𝑙(0), �̂�ℎ(0), 𝐼(0), 𝑉 (0)) ∈ X0,

and hence, 𝐼(0) > 0, 𝑉 (0) > 0. Thus, (�̂�𝑙(𝑡), �̂�ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) is a 𝜏-periodic
solution of system (1) with 𝐼(0) > 0, 𝑉 (0) > 0. By the similar arguments
to those in Lemma 5, we can further show that

(�̂�𝑙(𝑡), �̂�ℎ(𝑡), 𝐼(𝑡), 𝑉 (𝑡)) ≫ 0.

This completes the proof of Part (ii). □

4. Numerical computation: role of morphine pharmacodynamics
and periodic intake

In this section, we present results from the numerical computations
performed to study the role of morphine pharmacodynamics in dif-
ferent aspects of viral dynamics within drug abusers. Particularly, we
focus on how parameters related to morphine pharmacodynamics affect
the infection threshold (𝑖), viral load (vRNA copies per ml of plasma),
and CD4 count (the total number of CD4+ T-cells per microliter of
plasma). We use the results from Lemma 3, which states that the infec-
tion threshold (𝑖) can be obtained by solving 𝜌(𝑊 (𝜏, 𝜃)) = 1 for 𝜃 to
compute 𝑖, and we obtain 𝜃 solution from 𝜌(𝑊 (𝜏, 𝜃)) = 1 numerically.
Furthermore, we solve the model system (1) numerically in MATLAB
to evaluate the influence of the pharmacodynamic parameters on the
viral load and CD4 count.

We obtain some of the model parameters from previously published
literature and the remaining parameters are estimated and/or assumed.
Specifically, we refer studies on basic viral dynamics [45–47] and
morphine conditioning viral dynamics [13,48] for base-case parameters
used in our simulations. All model parameters along with description,
their values, and sources are provided in Table 1. Viral dynamics for
the first 200 days predicted by the model with the base-case parameters
(Table 1), which gives 𝑖 ∼ 4.5 (IVM) and ∼ 5.9 (SROM), are shown
in Fig. 3. Clearly, the infection persists as 𝑖 > 1, consistent with
our theoretical result. However, the parameters used here did not
correspond to the periodic solution with a large amplitude. We also
perform a sensitivity analysis of those parameters which were not
available and assumed. Sensitivity of peak viral load and set point viral
load on hundreds of parameter sets selected randomly from a wide
range of uncertain parameters (𝜂, 𝜎, 𝑀ℎ, 𝑛) indicates that the model
is robust across these uncertain parameters within a reasonable range
(Fig. 3). We now discuss the results for two routes of morphine intake,
IVM and SROM, separately.
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Fig. 3. Model prediction of viral dynamics for the first 200 days post infection (first row) and sensitivity of peak viral load and set point viral load (second row) for IVM case
(first column) and SROM case (second column).

Table 1
Model parameters.

Description Parameter Estimate Source

Reproduction rate of T cells 𝜆 3630 cells ml−1 day−1 [13,48]
Infection rate of 𝑇𝑙 𝛽𝑙 2.29 × 10−9 day−1 Estimate, [13,48]
Infection rate of 𝑇ℎ 𝛽ℎ 2.29 × 10−7 day−1 Estimate, [13,48]
Death rate of uninfected T cells 𝑑 0.01 day−1 [45,47]
Death rate of infected T cells 𝛿 0.65 day−1 Estimate, [48]
Virion production rate 𝑝 2500 day−1 [48]
Virion clearance rate 𝑐 23 day−1 [46]
Transition rate from 𝑇𝑙 to 𝑇ℎ 𝑟 0.15 day−1 [48]
Transition rate from 𝑇ℎ to 𝑇𝑙 𝑞 0.18 day−1 [48]
Net 𝐴(𝑡) effect scaling factor 𝜂 0.8 ml ng−1 Assumed
Net 𝐴(𝑡) effect scaling factor 𝜎 0.5 day−1 Assumed
Time morphine concentration is half 𝑀ℎ 50 days Assumed
Hill’s coefficient 𝑛 5 Assumed
Morphine dose 𝑎0 100 [0–200] Varied
Morphine half life 𝑡1∕2 4 [1–10] hours Varied
Morphine mean level 𝑀0 100 [50–200] Varied
Amplitude 𝑎 50 [0–100] Varied
Drug intake interval 𝜏 8 [2–22] hours Varied

4.1. Intravenous morphine (IVM)

In this case, morphine pharmacodynamics parameters are morphine
dose, 𝑎0, morphine half-life, 𝑡1∕2 = ln (2)∕𝑏1, and drug interval, 𝜏. With
all other parameters fixed as the values in Table 1, we vary 𝑎0, 𝑡1∕2, and
𝜏 to observe their effects on 𝑖, viral load, and CD4 count.

Infection threshold, 𝑖. As shown in Fig. 4, each of the morphine
pharmacodynamics parameters can affect the value of 𝑖. In general,
an increase in morphine dose and/or a half-life increases 𝑖, while an
increase in drug interval decreases 𝑖 (Fig. 4). In particular, a morphine
dose greater than 50 (i.e., 𝑎0 > 50) causes a faster increase in 𝑖
(Fig. 4(a)), resulting in the value of 𝑖 about 6 for 𝑎0 = 200, which is
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Fig. 4. Viral infection threshold, 𝑖, as a function of (a) the morphine dose, 𝑎0, (b) the half-life of morphine, 𝑡1∕2, and (c) the morphine intake interval, 𝜏, in IVM route.

quite high compared to the value of 𝑖 = 3.5 in the absence of morphine
(𝑎0 = 0). Similarly, an increase in half-life from 1 hr to 10 hr can cause
to increase 𝑖 from 3.5 to 5.7 (Fig. 4(b)). Also, a higher frequency of
morphine intake, such as intake of every 2 hr instead of every 22 hr,
can drastically raise the value of 𝑖 (𝑖 = 6.1 for 𝜏 = 2 hr and 𝑖 = 3.6
for 𝜏 = 22 hr) (Fig. 4(c)). Since our parameters correspond to infected
hosts, the value of 𝑖 is greater than 1 for all the range of morphine
pharmacodynamics as expected, showing that the morphine pharmaco-
dynamics do not play a role in determining whether infection occurs or
is avoided. However, the effects of morphine pharmacodynamics on 𝑖
obtained here can be critical in the case when antiretroviral therapy,
including pre-exposure prophylaxis, is used.

Viral load and CD4 count . For the purpose of demonstration, we
use our model to compute viral load and CD4 count at the end of 200
days post infection. Our results (Fig. 5(a)) show that an increase in the
morphine dose from 𝑎0 = 0 to 𝑎0 = 200 increases the viral load at
the end of 200 days post infection from 5.59 log10 to 5.67 log10. In
this case the day 200 post infection CD4 count decreases from 354 to
256 (Fig. 5(c)). Similarly, increasing the morphine half-life from 1 to
10 h increases the day 200 post infection viral load from 5.58 log10
to 5.67 log10 (Fig. 5(b)) and decreases the CD4 count from 353 to 260
(Fig. 5(d)). Therefore, the morphine pharmacodynamics related to IVM
route can have noticeable effects on both viral load and CD4 count in
HIV-infected drug abusers.

4.2. Slow-release oral morphine (SROM)

As discussed earlier the profile of morphine through SROM route
can be described with sinusoidal function with three main parameters:
𝑀0 (the mean level of morphine), 𝑎 (morphine amplitude), and 𝜏
(morphine intake interval). Here, we use our model to compute 𝑖,
viral load and CD4 count for different values of 𝑀0, 𝑎, and 𝜏, while all
other parameters are fixed at the values in Table 1.

Infection threshold, 𝑖. As in IVM case, here also, the value of
𝑖 remains greater than 1 for all range of parameters considered as
expected because of our base parameter values that correspond to
infected host. As shown in Fig. 6(a), an increase in the mean level
of morphine increases 𝑖 with a pronounced increase for the mean
level between 50 and 125 (i.e., 4.8 ≤ 𝑖 ≤ 6.3 for 50 ≤ 𝑀0 ≤ 125).
This effect on 𝑖 from increasing 𝑀0 eventually saturates with almost
no change in 𝑖 for 𝑀0 > 125 (Fig. 6(a)). Similarly, an increase in
amplitude diseases 𝑖 with a larger decrease in 𝑖 when the amplitude
increases from 25 to 100 (Fig. 6(b)). Furthermore, our results show that
increasing interval for morphine intake from 2 hours to 8 hours slightly
decreases 𝑖 from 6.2 to 5.9 (Fig. 6(c)), but 𝑖 remains almost constant
for morphine intake interval greater than 8 hours.

Viral load and CD4 count . Again, we compute viral load and CD4
count at the end of 200 days post infection for varying morphine

pharmacodynamics parameters related to SROM route. An increase in
the mean level of morphine increases the day 200 post infection viral
load from 5.14 log10 to 5.27 log10 whereas an increase in the amplitude
decreases the viral load from 5.26 log10 to 5.01 log10 (Fig. 7(a) and
7(b)). These results suggest that the morphine pharmacodynamics play
a minimal role in altering the viral load in the morphine intake route
SROM compared to the IVM route. However, we found comparable
effects on CD4 count in both SROM and IVM routes. For example, an
increase in the mean level of morphine dose from 0 to 200 decreases the
CD4 count from 340 to 246 (Fig. 7(c)), and an increase in the amplitude
from 0 to 10 increases the CD4 count from 250 to 287 (Fig. 7(d)).

5. Conclusion

In this study, we developed a mathematical model to describe HIV
virus and antibody dynamics under morphine (drugs of abuse) con-
ditioning with periodic intake. We considered pharmacodynamics of
morphine administered through two commonly practiced routes: (i) in-
travenous morphine (IVM), in which morphine is directly administered
into the circulation providing a rapid effect [20], and (ii) slow release
oral morphine (SROM), in which morphine is slowly released into the
circulation during pharmacotherapy maintenance treatment for opioid-
dependent individuals [23–30]. Our model is capable of capturing the
time-dependent nature of morphine concentration within a host, allow-
ing us to properly study the effects of morphine pharmacodynamics as
well as the frequency of morphine intake, which are important factors
for virus dynamics in drug abusers. Moreover, two entirely different
time-dependent patterns embedded in the model resulting from two
routes of morphine intake have provided further insights into the role of
immune response in virus control under conditioning of drugs of abuse.

We successfully analyzed our non-autonomous model, establishing
stability theorems for global dynamics of the system. The rigorous
mathematical techniques implemented for our model can also be used
in other non-autonomous systems of infection dynamics, for which
analytical methods are still limited. In particular, we formulated the
infection threshold, 𝑖, that completely determines the viral dynamics
under periodic morphine intake and provides a condition for infection
to persist (𝑖 > 1) or die out (𝑖 < 1). Importantly, 𝑖 highly depends
on parameters related to morphine pharmacodynamics and periodic
intake in both IVM and SROM routes. In addition, we also performed
numerical computations of our model to demonstrate that morphine
pharmacodynamics can have significant impact on viral load and CD4
counts in HIV-infected drug abusers.

We acknowledge some limitations of our study. Our simulation
results are based on parameters estimated from limited data sets. More
realistic parameters, including those related to morphine and anti-
body responses, may help improve our results. We introduced explicit
relationship between antibody response and morphine concentration.
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Fig. 5. Changes in viral load and CD4 count with varying morphine dose, 𝑎0, and morphine half-life, 𝑡1∕2, in IVM route.

Fig. 6. Viral infection threshold, 𝑖, as a function of (a) the mean level of morphine, 𝑀0, (b) the morphine amplitude, 𝑎, and (c) the morphine intake interval, 𝜏, in SROM route.

Also, we included the effects of virus particles on antibody production
implicitly via the time-dependent functional form of antibody. While
this approach was validated by the experimental data in previous

studies [13,19], modeling a detailed role of virus particles in antibody
production may be beneficial for accurate evaluations of morphine
intake. However, such complicated models may require rich data sets
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Fig. 7. Changes in viral load and CD4 count with varying mean level of morphine, 𝑀0, and the morphine amplitude, 𝑎, in SROM route.

related to mechanisms of altering antibody levels due to virus in the
presence of morphine. For the IVM case, we did not consider the
residual morphine from the previous period at the beginning of the next
period. While this assumption is valid for our base-case computations, a
detailed modeling of residual morphine results in an impulsive system.
The mathematical formulation of the reproduction ratio for such impul-
sive differential equation systems as in Bai and Zhao [49] may be quite
different from the periodic system considered in this study. Because
of complexity of the model, we are unable to find the closed form of
infected equilibrium and unable to establish its uniqueness. Instead we
have established its existence only.

In summary, our study provides a model and techniques for evaluat-
ing periodic intake of drugs of abuse on HIV infection dynamics within
a host. Our analytical and simulation results offer several interesting
findings that can be beneficial to develop proper guidelines for suc-
cessful HIV control and prevention strategies, including development
of antibody-based vaccines and pre-exposure prophylaxis, for drug
abusers.
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