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1 Introduction

Under favorable conditions, lipid molecules consisting hydrophobic tail and
hydrophilic head groups, self assemble to form vesicles in aqueous medium
with a lipid bilayer separating the inner and outer solutions [Ino96, Kom96].
Vesicles have been attracting enormous attentions because of their biological
significance with numerous applications such as drug delivery and targeting,
medical imaging, catalysis, etc. [KR96, Zan96]. It is recognized that the equi-
librium shape of the vesicle is determined by minimizing a shape energy given
by the spontaneous-curvature model of Helfrich [Hel73, OH89]:

F =
1
2
kb

∮
(c1 + c2 − c0)2dA + kG

∮
c1c2dA + λ

∮
dA + ∆P

∫
dV. (1)

Here dA, dV and kb are surface area element, volume element and the bending
rigidity respectively; c1 and c2 denote the two principal curvatures and c0

denotes the spontaneous curvature which takes the possible asymmetry of the
bilayer into account; λ and ∆P are Lagrangian multipliers used to incorporate
the constraints of constant area and constant volume respectively. Physically
λ and ∆P can be interpreted as the tensile stress and the pressure difference
respectively. For vesicles with same topological forms, the Gaussian curvature
term kG

∮
c1c2dA can be dropped from (1).

For vesicles with axisymmetric equilibrium shapes, four different ap-
proaches have been used to derive the shape equation in the literature.

A1. In Ou-yang and Helfrich [OH89], a general shape equation was derived by
allowing the variation of the functional F only in the normal direction of
the membrane surface. The axisymmetric shape equation can be obtained
by applying the axisymmetric condition;
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A2. This approach is similar to A1, by allowing variation only in the normal
direction. The difference is that variation is carried out after the axisym-
metric condition is applied [HO93].

A3. Again, functional F is written in the axisymmetric form first. The calcu-
lus of variation is performed without the restriction in the normal direc-
tion [MFR91, Pet85].

A4. This approach is similar to A3. However, the arc-length is used as the
primary variable, instead of the distance to the axis of symmetry [SBL91,
Sef66].

Both A1 and A2 generate the same equation. The shape equations produced
by A3 and A4, however, are slightly different, as pointed out in [HO93]. In
an attempt to clarify the confusion, it was shown in [ZL93] that the shape
equations in A1 and A3 are related. However, due to the coordinate singu-
larity, this relationship does not necessarily imply equivalence [BP04, Poz03].
This was confirmed in [NOO93] with the help of an analytical expression of
a circular biconcave discoid (the shape of red blood cells). In addition, by
considering the 2D limit, it was shown that the equations derived using A3
and A4 are erroneous since they do not recover the correct equation while the
equation from A1 and A2 gives the correct limit [BP04, Poz03]. Other spe-
cial solutions have also been used to validate or invalidate the equivalence of
the shape equations [HO93, NOO93]. The most satisfactory discussion about
these issues has been presented in [JS94], in which it was shown that the
same equation can be obtained by A4 and A1. Their main conclusion is that
an additional equation has to be introduced for the Hamiltonian (i.e. constant
Hamiltonian) which can be maintained by proper treatment of the boundary
conditions. However, this idea of treatment of boundary condition does not
work for the fixed integral limits (i.e. constant total contour length) and the
validity of the argument was questioned by [BP04, Poz03]. Therefore, it is
still not clear whether it is necessary to restrict the variation in the normal
direction, as suggested in [OH89].

In this paper we show that the same shape equation in A1 and A2 can be
obtained without restricting the variation in the normal direction. We further
prove that a slight modification of A3 produces the correct equation. As long
as a geometric condition is satisfied (explicitly or implicitly), the variation does
not have to be in the normal direction, contrary to the argument in [HO93].
To show the equivalence of equations by A1 and A4, [JS94] also suggested
similar types of geometric conditions. However, they and others following their
arguments have not implemented these conditions in their later works [DBS03,
JL96] while attempting to get the axi-symmetric shape equations. Our result
(correct shape equation by modification of A3) suggests that when A4 is used,
apart from extra hamiltonian condition the geometric condition should also
be properly imposed to get the correct shape equations.

The rest of the paper is organized as follows. In Section 2 we present the
equations obtained using A1-A3 in the literature. In Section 3, we show that
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the correct equation can be obtained by taking the variation in the direction
perpendicular to the axis of symmetry. Furthermore, by imposing the geo-
metric condition implicitly in the action form of the energy functional, we
show that A3 can produce exactly the same equation as A1 (and A2). Various
topological shapes of vesicles are discussed in Section 3.4 and we conclude the
paper in Section 4.

2 Shape Equation

We consider vesicles of axisymmetric shape with the axis of symmetry along
the z-axis. We denote the arc-length of the contour, the distance to the sym-
metric axis and the angle made by the tangent to the contour with the plane
perpendicular to the axis of symmetry by s, ρ and ψ respectively (See Fig. 1a).
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δρ
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Fig. 1. (a) Schematic diagram of the axisymmetric vesicle. (b) The variation in
the direction perpendicular to the axis of symmetry (i.e in ρ-direction). AB = ds is
the segment in the original generating curve, CD is the corresponding segment in
the curve deduced by the variation δρ in ρ-direction and dashed curve is the curve
deduced by moving the original curve from A to C.

Using A1 (i.e. substituting the mean curvature H = −(c1 + c2)/2 =
−(1/2)[cosψ(dψ/dρ) + sin ψ/ρ] and the Gaussian curvature K = c1c2 =
cosψ sin ψ(1/ρ)(dψ/dρ) in the general shape equation derived by Ou-Yang
and Helfrich [OH89]), the shape equation can be obtained as [BP04, HO93,
NOO93, Poz03, ZL93]:

cos3 ψ
d3ψ

dρ3
= 4 sin ψ cos2 ψ

d2ψ

dρ2

dψ

dρ
− cosψ(sin2 ψ − 1

2
cos2 ψ)

(
dψ

dρ

)3

+
7 sin ψ cos2 ψ

2ρ

(
dψ

dρ

)2

− 2 cos3 ψ

ρ

d2ψ

dρ2
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+
(

c2
0

2
− 2c0 sin ψ

ρ
+

sin2 ψ

2ρ2
+

λ

kb
− sin2 ψ − cos2 ψ

ρ2

)
cos ψ

dψ

dρ

+
∆P

kb
+

λ sin ψ

kbρ
− sin3 ψ

2ρ3
+

c2
0 sin ψ

2ρ
− sinψ cos2 ψ

ρ3
. (2)

The axisymmetric shape equation using A3, in which axisymmetric expres-
sions for curvatures are used in (1) and Euler-Lagrange equation is obtained,
is [MFR91, Pet85]

H = 0, (3)

where

H = cos2 ψ
d2ψ

dρ2
− sin ψ cosψ

2

(
dψ

dρ

)2

− sin ψ

2ρ2 cosψ
− sin ψ cosψ

2ρ2
− c2

0 sin ψ

2 cos ψ

+
cos2 ψ

ρ

dψ

dρ
− c0 sin2 ψ

ρ cosψ
− ∆Pρ

2kb cos ψ
− λ sinψ

kb cos ψ
. (4)

The shape equation using A4 is obtained in the same way [JS94, SBL91, Sef66].

3 Equivalence of the Shape Equations

Equation (4) has been obtained without any reference to coordinate z. There-
fore, ψ(ρ) varies over a larger class of functions and the extreme function which
minimizes the energy functional may not be admissible. In fact, the coordi-
nates z(s) and ρ(s) have to satisfy the geometrical relations: dρ/ds = cos ψ
and dz/ds = − sin ψ, which gives the geometric relation in the parameter ρ
as

dz

dρ
cosψ + sin ψ = 0. (5)

In the following we show that the correct shape equation can be obtained if this
geometric condition is imposed explicitly or implicitly. We will demonstrate
this fact by using two different approaches.

3.1 Variation in the ρ-direction

We now derive the shape equation for axisymmetric vesicles by taking the
variation of the axisymmetric energy functional. The method used here is
similar to A2 [HO93] but the variation is performed along the direction per-
pendicular to the axis of symmetry (i.e. ρ-direction) and the corresponding
induced variations in ψ and s are obtained by using the geometric relations
dρ/ds = cos ψ and dz/ds = − sin ψ. The method used here is similar to the
method used to find the equation of geodesics in Riemannian geometry by
means of the variational method [HO93, Spi79].

We start with the following axisymmetric shape energy functional with
parameter s
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Fs = π

∫ [
kbρ

(
dψ

ds
+

sin ψ

ρ
− c0

)2

+ ∆Pρ2 sinψ + 2λρ

]
ds (6)

and introduce an arbitrary parameter t to get

Fs = π

∫
L̄

(
ρ(t), ψ(t), ψ̇(t), ṡ(t)

)
dt, (7)

where

L̄
(
ρ(t), ψ(t), ψ̇(t), ṡ(t)

)
=

kbρ(ψ̇)2

ṡ
+

kbṡ sin2 ψ

ρ
+ kbρc2

0ṡ− 2kbc0ρψ̇

+2λρṡ + ∆Pρ2 sin ψṡ. (8)

Note that the terms 2kbψ̇ sin ψ and −2kbc0ṡ sin ψ have been neglected in (8)
as they do not contribute to the shape equation [HO93].

Let δρ be the infinitesimal variation along the ρ-direction so that the
variation along the z-direction is δz = 0 (See Fig. 1b). The geometric relation
dρ = cos ψds gives

− sin ψds(δψ) + cos ψδds = δdρ. (9)

Similarly, the geometric relation dz = − sin ψds, using dδz = δdz due to
independence between operators d and δ, gives

cos ψds(δψ) + sin ψδ(ds) = 0. (10)

Solving Equations (9) and (10) for δψ and δ(ds), we get

δψ = − sin ψδdρ

ds
, δ(ds) = cos ψδdρ, δψ̇ = − d

dt

(
sin ψδdρ

ds

)
, δṡ =

cos ψδdρ

dt
.

The shape equation is determined by the variational equation δFs = 0,
which gives ∫ [

∂L̄

∂ρ
δρ +

∂L̄

∂ψ
δψ +

∂L̄

∂ψ̇
δψ̇ +

∂L̄

∂ṡ
δṡ

]
dt = 0. (11)

Using expressions for δψ, δψ̇ and δṡ in (11) and performing integration by
parts and simplification, we obtain the following shape equation

∂L̄

∂ρ
+

d

dt

(
sin ψ

ṡ

∂L̄

∂ψ

)
− d

dt

(
sin ψ

ṡ

d

dt

∂L̄

∂ψ̇

)
− d

dt

(
cos ψ

∂L̄

∂ṡ

)
= 0. (12)

We use Equation (8) in (12) and consider ρ as a parameter by taking t = ρ.
Then using ψ̇ = dψ/dρ, ṡ = ds/dρ = 1/ cos ψ, ρ̇ = 1 along with their higher
derivatives in the resulting equation, we obtain (2), which is also the shape
equation obtained in the literature using A2. Therefore, we have shown that
the variation does not have to be in the normal direction, the variation in other
directions can also produce the same shape equation if the induced variations
in other variables are obtained by using the geometric relations dρ/ds = cos ψ
and dz/ds = − sin ψ. We note that the approach outlined here breaks down
when the surface is perpendicular to the axis of symmetry. We now move on
to a more general approach.
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3.2 The method of Lagrange multiplier

We include the geometric condition (5) in the action form of shape energy
functional via an additional Lagrange multiplier η as follows:

F = π

∫
L̃

(
ρ, ψ(ρ), z(ρ), η(ρ),

dψ

dρ
,
dz

dρ

)
dρ, (13)

where the Lagrangian L̃ is

L̃ =
kbρ

cosψ

(
dψ

dρ
cos ψ +

sin ψ

ρ
− c0

)2

+
∆Pρ2 sin ψ

cos ψ
+

2λρ

cos ψ

+η

(
dz

dρ
cosψ + sin ψ

)
. (14)

This gives the following Euler-Lagrange equations

H =
η

2kbρ
, (15)

dz

dρ
= − sin ψ

cos ψ
, (16)

cos ψ
dη

dρ
= η sin ψ

dψ

dρ
. (17)

We rewrite (15) as η = η
(
ρ, ψ, dψ/dρ, d2ψ/dρ2

)
and find the expression for

dη/dρ. Then we substitute the expressions for η and dη/dρ in (17). After
lengthy mathematical manipulations, we obtain (2), which is the equation
obtained using A1 (and A2).

This suggests that the discrepancy in the shape equations obtained by
different approaches in the literature occurs when the geometric relation (5)
is not imposed. A3 can produce the same equation as A1 (and A2) as long
as the geometric relation (5) is preserved when the variation is performed. In
the situation when ψ can vary independently without taking z into consider-
ation, the geometric condition is not necessary. Furthermore, if the variation
is with respect to the normal displacement as in A1 and A2, ρ and z are
proportionately varied so that the geometric relation is implicitly preserved.

3.3 Relationship between the shape equations

Equation (17) can be expressed as d(η cosψ)/dρ = 0, which by using (15) leads
to d(ρH cosψ)/dρ = 0. We note that this relation differs from the equation
in [ZL93] i.e. (1/ρ)[d(ρH cosψ)/dρ] = 0, which has an extra factor 1/ρ. Not
having 1/ρ avoids the singularity at ρ = 0, which removes the doubt on
the validity of the conclusion in [ZL93], as pointed out in [BP04, Poz03].
Integrating it once yields η cosψ = 2kbρH cosψ = C, where C is an integrating
constant. Obviously C = 0 does not necessarily lead to H = 0 unless ρ cosψ 6=
0. Therefore, (2) and (4) are equivalent if and only if η = 0, which is relatively
easy to verify.



Equation of axisymmetric vesicles 7

3.4 Vesicles with distinct topological shapes

It has been pointed out in the literature that the shape equations obtained
using different approaches are equivalent only for spherical vesicles. We now
demonstrate this by observing the value of Lagrangian multiplier η used in
our approach.

Spherical Vesicles

For spherical vesicles, ρ = r0 sin ψ, (2) leads to ∆Pr3
0 + 2λr2

0 + kbc
2
0r

2
0 −

2kbc0r0 = 0 and (15)-(17) yields ∆Pr3
0+2λr2

0+kbc
2
0r

2
0−2kbc0r0+η cot ψ csc ψr0 =

0. Since these two conditions are identical, we have η = 0. Thus (4) is equiva-
lent to (2) for spherical vesicles. This is due to the fact that we do not need to
impose any constraint on z and its derivatives, which allows ψ to vary freely.

Cylindrical Vesicles

We now assume that the vesicle is of cylindrical shape, which is given by the
equations ρ = r0, ψ = π/2. Substituting this in (2) and in (15)-(17), we
can verify that for this cylindrical vesicle equation to be solution of both (2)
and (15)-(17), we require

C = ∆Pr0 (2− r0)+2λr0

(
1
r0
− 1

)
+c2

0kbr0

(
1
r0
− 1

)
+2kbc0− kb

r0

(
1
r0

+ 1
)

.

Since C 6= 0 and cos ψ = 0, η cannot be zero. To obtain the cylindrical
vesicle we need to have infinite slope dz/dρ (= − sin ψ/ cos ψ), which must
be maintained when the variation is performed. Hence, (4) and (2) are not
equivalent for cylindrical vesicles.

Toroidal Vesicles

Similarly, a vesicle of perfect torus shape given by ρ = x + sin ψ, where 1/x
is the ratio of its generating radii, can be solution of both (2) and (15)-(17)
only if C = 2kb(1 + 2c0). Thus η = 0 only if c0 = −1/2. However, based
on experiments performed in [FMB92, MBB91, MB91] and theoretical result
in [Wil82], in general [HO93] c0 6= −1/2. Therefore, η 6= 0 and (4) is not
equivalent to (2) for toroidal vesicles.

As a simple observation, we offer the following explanation. To have a
vesicle of perfect torus shape, we need to have vanishing slope of the curve
z = z(ρ) at the point ρ = x (i.e. (dz/dρ)|ρ=x = 0). Because of this condition,
ψ can not vary without taking z into consideration.
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Circular biconcave discoids

In [NOO93] the authors showed that ψ = arcsin[ρ(c0 ln ρ+b)] with a constant
b, is a solution of (2) under the condition ∆P = λ = 0. This solution with
c0 < 0 represents a circular biconcave discoid, the shape of the red blood
cell (RBC). For this vesicle to be a solution of (15)-(17) under the condition
∆P = λ = 0, we require η = 4kbc0/(

√
1− ρ2(c0 ln ρ + b)2). The nonzero η

indicates that (4) is not equivalent to (2), unless c0 = 0.
When c0 6= 0, the biconcave vesicles z = z(ρ) has the local extreme value

i.e., dz/dρ = 0 at ρ = exp(−b/c0). Thus, ψ can not vary independently. When
c0 = 0, the biconcave vesicle becomes spherical with b = 1/r0, thus η = 0 and
(4) and (2) become equivalent.

4 Conclusion

We have introduced two new approaches for deriving the equilibrium shape
equation for axisymmetric vesicles. We have shown that as long as the ge-
ometric relation dz/dρ = − tan ψ is maintained in performing the calculus
of variation, both approaches produce the correct shape equation. We have
also shown that the variation does not have to be in the normal direction.
Furthermore, by imposing the geometric condition as a Lagrange multiplier,
we established a simple relationship between the two distinct shape equa-
tions derived previously in the literature. Using this relationship, it becomes
a straightforward exercise to verify the equivalence of the shape equation us-
ing explicit shape solutions.
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