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Abstract. In recent years, the growing spatial spread of dengue, a mosquito-

borne disease, has been a major international public health concern. In this

paper, we propose a mathematical model to describe an impact of spatially

heterogeneous temperature on the dynamics of dengue epidemics. We first

consider homogeneous temperature profiles across space and study sensitivity

of the basic reproduction number to the environmental temperature. We then

introduce spatially heterogeneous temperature into the model and establish

some important properties of dengue dynamics. In particular, we formulate two

indices, mosquito reproduction number and infection invasion threshold, which

completely determine the global threshold dynamics of the model. We also

perform numerical simulations to explore the impact of spatially heterogeneous

temperature on the disease dynamics. Our analytical and numerical results

reveal that spatial heterogeneity of temperature can have significant impact

on expansion of dengue epidemics. Our results, including threshold indices,

may provide useful information for effective deployment of spatially targeted

interventions.

1. Introduction. Dengue, a mosquito-borne viral disease, has become one of the

major public health concerns as 2.5 billions people are currently living in areas of risk

of dengue, and about 390 million new dengue infections occur annually worldwide

[2, 41]. In comparision to only nine countries affected by dengue epidemics in the

1970’s, current reports of dengue outbreaks in more than a hundred countries show

that dengue fever is one of the most rapidly spreading mosquito-borne viral diseases

in the world [2, 35, 41]. Because of this remarkably growing spatial spread of dengue,

studies on dengue epidemics across space are becoming increasingly important.

While causes for increase in dengue cases may include a combination of multiple

factors such as range expansion of its primary vector (the mosquito Aedes aegypti),

inefficient vector control, human population growth and urbanization [1, 10, 24,
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29, 34], the majority of them are thought to link to human and vector mobility

and climatic factors [1, 2, 24, 26]. In particular, the environmental temperature

has been found to highly affect the transmission dynamics of dengue [2, 25, 35].

Also, continuous increase of global temperature has predicted that the endemic

range of dengue will keep expanding geographically [1, 9, 11, 15, 25, 42]. Therefore,

it is critical to understand the role of temperature heterogeneity on geographical

expansion of dengue epidemics.

Experimental studies show that the environmental temperature can highly and

nonlinearly affect many mosquito entomological parameters [44, 45], such as ovipo-

sition rate, mortality rate and maturation rate, as well as some dengue dynamics

parameters, such as incubation period and transmission rates [7, 17]. Combined

studies of such nonlinear effects of spatially heterogeneous temperature and mo-

bility of human and vector can advance our understanding of dengue transmission

dynamics. Since there is no vaccine for dengue [2, 30] and the current dengue con-

trol relies on limiting mosquito population [2, 30, 44], inclusion of detailed effects

of environmental temperature on mosquito entomology into the models of dengue

spread may provide useful information for proper implementation of prevention and

control measures.

Previous quantitative studies on dengue epidemics have provided significant un-

derstanding of temporal dynamics [17, 18, 27, 23, 43] and spatial spread [6, 15, 24,

25, 35] of dengue. However, none of the existing models have considered nonlinear

heterogenous temperature that might have significant impact on disease outcomes

and prevention effectiveness. In this study, we propose a transmission dynamics

model of dengue that incorporates both mobility of human and vector as well as

nonlinear effects of spatial heterogeneity on the environmental temperature. We

introduce into the model a spatial diffusion of human and vector population and

use experimentally-determined dependence of entomological and dengue dynamics

parameters on the environmental temperature. We focus on how spatial diffusion

and spatial temperature heterogeneity affect the infection invasion threshold and

the dynamics of dengue epidemics.

The rest of the paper is organized as follows. The model is formulated in Section

2. The model analysis and simulation results are presented in Sections 3 and 4,

respectively. Finally, we state some conclusions of the paper in Section 5.

2. Model. Suppose Ω ⊂ R
n is a bounded domain which contains human and

female mosquito populations. We divide the total human population into susceptible

(Hs), exposed (He), infected (Hi) and recovered (Hr) groups. We also divide the

total female mosquito population into aquatic (A), susceptible (Ms), exposed (Me),

and infected (Mi) groups. We introduce the human and mosquito mobility by

spatial diffusion terms in the model. Following experimental evidences [7, 17, 44], we

incorporate the effects of environmental temperature via entomological and dengue

dynamics parameters.

The model we consider is as follows:

∂A

∂t
= kδ(x)

(
1− A

C

)
(Ms +Me +Mi)− (θ(x) + µa(x))A, (2.1)

∂Ms

∂t
= DM∆Ms + θ(x)A − bβm(x)MsHi

Hs +He +Hi +Hr
− µm(x)Ms, (2.2)
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∂Me

∂t
= DM∆Me +

bβm(x)MsHi

Hs +He +Hi +Hr
− (γm(x) + µm(x))Me, (2.3)

∂Mi

∂t
= DM∆Mi + γm(x)Me − µm(x)Mi, (2.4)

∂Hs

∂t
= DH∆Hs + Λh(x) − µhHs −

bβh(x)HsMi

Hs +He +Hi +Hr
, (2.5)

∂He

∂t
= DH∆He +

bβh(x)HsMi

Hs +He +Hi +Hr
− (γh + µh)He, (2.6)

∂Hi

∂t
= DH∆Hi + γhHe − (αh + µh)Hi, (2.7)

∂Hr

∂t
= DH∆Hr + αhHi − µhHr. (2.8)

with (x, t) ∈ Ω × (0,∞). Here, Λh(x) represents the birth or recruitment rate of

susceptible human population. DM and DH are the diffusion coefficients related to

mosquito and human, respectively, and ∆ is the Laplace operator. In the model,

the aquatic mosquito population, A, represents both larvae and pupae. Matured

mosquitos (Ms+Me+Mi) produce aquatic mosquitos with a per capita oviposition

rate δ(x)(1 − A
C ), where δ(x) is the intrinsic oviposition rate and C is the carrying

capacity of the mosquito aquatic phase. Parameter k represents a combination

of the fraction of eggs hatching to larvae and the fraction of female mosquitoes

hatched from all eggs. As a result, the net increase of aquatic mosquito population

is kδ(x)(1 − A
C )(Ms +Me +Mi) per unit time. Female mosquitoes emerge from

the aquatic phase with a rate θ(x) and we assume that these newly emerged female

mosquitos are all susceptible. Parameters µa(x), µm(x), and µh represent natural

mortality rate of aquatic population, mosquito population, and human population,

respectively.

Susceptible mosquitoes get infected when they bite infected humans with a per

capita transmission rate bβm(x)Hi/(Hs +He +Hi +Hr), where b is the per capita

biting rate of mosquitoes and βm(x) represents the transmission probability from

human to mosquito. We acknowledge that biting rates may also depend on the

environmental temperature. Because of lack of explicit data on the functional rela-

tionship between the environmental temperature and biting rates, we take b to be

constant in this study. However, as the net transmission rate bβm(x) is a function

of x, all theorems developed in this paper are also applicable to cases in which b

depends on x. Exposed mosquitos become infectious at a rate γm(x) equivalent to

an average extrinsic period 1/γm(x). Similarly, susceptible humans get infected by

mosquito bites with a per capita transmission rate bβh(x)Mi/(Hs+He+Hi+Hr),

where βh(x) represents the transmission probability from mosquito to human. γh
represents the rate at which exposed humans become infectious, corresponding to

intrinsic period 1/γh, and infected humans get recovered from dengue at a rate αh.

As mentioned in Bhatt et al. [2], we assume that these recovered humans do not

loose immunity during the period of dynamics considered. Since dengue virus is

generally non-pathogenic [2, 30], we ignore disease caused deaths in our model.

Here, we use the following homogeneous Neumann boundary conditions

∂Ms(x,t)
∂ν = ∂Me(x,t)

∂ν = ∂Mi(x,t)
∂ν = 0

∂Hs(x,t)
∂ν = ∂He(x,t)

∂ν = ∂Hi(x,t)
∂ν = ∂Hr(x,t)

∂ν = 0,
(2.9)
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x ∈ ∂Ω, t > 0,

and the following initial conditions

A(x, 0) = A0(x), Ms(x, 0) =M0
s (x), Me(x, 0) =M0

e (x), Mi(x, 0) =M0
i (x),

Hs(x, 0) = H0
s (x), He(x, 0) = H0

e (x), Hi(x, 0) = H0
i (x), Hr(x, 0) = H0

r (x),

x ∈ Ω,
(2.10)

where ∂
∂ν denotes the differentiation along the outward normal ν to ∂Ω. We note

that in the absence of diffusions and spatially homogeneous environment, our system

(2.1)-(2.10) recovers the ODE system of dengue model proposed previously in [27].

2.1. Entomological parameters. We consider the environmental temperature

profile, T (x), that captures a heterogeneity of temperature across the domain Ω.

We obtained the data from an experimental study [44, 45], in which the depen-

dence of oviposition rate, aquatic phase mortality rate, rate of emergence of female

mosquito from aquatic phase, and female mosquito mortality rate on temperature

were studied. Based on the patterns observed in the data, we fitted the data to

appropriate functional curves (Fig. 2.1). Our data fitting exercise provides the

following relationships:

δ(x) =
δmT (x)

Nδ

δNδ

h + T (x)Nδ

, (2.11)

µa(x) = a0µa
+ a1µa

T (x) + a2µa
T (x)2 + a3µa

T (x)3 + a4µa
T (x)4, (2.12)

θ(x) =





0, T (x) < a1θ,

a0θT (x) (T (x)− a1θ)
√
a2θ − T (x), a1θ ≤ T (x) ≤ a2θ,

0, T (x) > a2θ.

,(2.13)

µm(x) = a0µm
+ a1µm

T (x) + a2µm
T (x)2. (2.14)

2.2. Dengue dynamics parameters. The incubation time period of dengue, i.e.

the average duration for which mosquitos stay in exposed class before they become

infectious, depends on temperature. In this study, we followed a previously devel-

oped function derived based on an enzyme kinetic model [7, 17], which provides

γm(x) =
1

a0γm
ea1γmT (x). (2.15)

Accurate data of the transmission probability from humans to mosquitos and

that from mosquitos to humans are not available. However, using rich empirical

data related to many other mosquito-flavivirus (West Nile virus, Murray Valley

encephalitis virus, and St. Louis encephalitis virus), Lambrechts et al. [17] have

provided reasonable estimates of Dengue transmission probability. As estimated

previously [17], the transmission probability from humans to mosquitos remains

negligible up to certain minimum temperature and increases linearly until it reaches

one at a maximum temperature and remains one for temperatures higher than the

maximum temperature. This trend can be described using E-max model (Fig. 2.2)

given by the following expression:

βm(x) =
T (x)Nβm

β
Nβm

mh + T (x)Nβm

. (2.16)
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Figure 2.1. Functional curves δ(T ), oviposition rate, µa(T ),

aquatic phase mortality rate, θ(T ), mosquito emergence rate from

acuatic phase, and µm(T ), mosquito mortality rate, fitted to the

experimental data [44]

0 7 14 21 28 35

Temperature (oC)

0

0.2

0.4

0.6

0.8

1

T
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y
(h

um
an

 to
 m

os
qu

ito
)

Generated data
Function β

m
(T)

Figure 2.2. Functional curve βm(T ), the transmission probability

from human to mosquito, fitted to the data generated from the

previous estimates [17]

For a temperature dependence of the transmission probability from mosquitos

to humans, we approximate it to the proportion of midgut-infected mosquitoes

transmitting virus as done in Lambrechts et al. [17]. Accordingly, a functional

relationship between the transmission probability from mosquitos to humans and

temperature is given by

βh(x) =





0, T (x) < a1βh
,

a0βh
T (x) (T (x)− a1βh

)
√
a2βh

− T (x), a1βh
≤ T (x) ≤ a2βh

,

0, T (x) > a2βh
.

(2.17)
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Table 2.1. Model parameters

Parameter Description Value Reference

k fraction of female larvae from eggs 0.5 (0-1) [18, 27]

b per capita biting rate 0.1 [4, 27]

µh Natural death rate of humans 4.22×10−5 d−1 Calculated, [16]

1/γh Intrinsic period 10 days [4, 16, 18, 27]

αh Human recovery rate 0.1 d−1 [18, 27]

DM , DH Diffusion coefficients - varied

δm In δ(x) 9.531 Data fitting

δh In δ(x) 22.55 Data fitting

Nδ In δ(x) 7.084 Data fitting

a0µa
In µa(x) 2.914 Data fitting

a1µa
In µa(x) -0.4986 Data fitting

a2µa
In µa(x) 0.03099 Data fitting

a3µa
In µa(x) -0.0008236 Data fitting

a4µa
In µa(x) 7.975×10−6 Data fitting

a0θ In θ(x) 8.044×10−5 Data fitting

a1θ In θ(x) 11.386 Data fitting

a2θ In θ(x) 40.1461 Data fitting

a0µm
In µm(x) 0.1901 Data fitting

a1µm
In µm(x) -0.0134 Data fitting

a2µm
In µm(x) 2.739×10−4 Data fitting

a0γm In γm(x) 5×104/3 Data fitting

a1γm In γm(x) 0.0768 Data fitting

βmh In βm(x) 18.9871 Data fitting

Nβm
In βm(x) 7 Data fitting

a0βh
In βh(x) 1.044×10−3 Data fitting

a1βh
In βh(x) 12.286 Data fitting

a2βh
In βh(x) 32.461 Data fitting

The model parameters are given in Table 2.1.

3. Model analysis. For convenience, we assume that

(u1, u2, u3, u4, u5, u6, u7, u8) = (A,Ms,Me,Mi, Hs, He, Hi, Hr).

Then system (2.1)-(2.10) becomes




∂u1

∂t = kδ(x)
(
1− u1

C

)
(u2 + u3 + u4)− (θ(x) + µa(x))u1, x ∈ Ω, t > 0,

∂u2

∂t = DM∆u2 + θ(x)u1 − bβm(x)u2u7

u5+u6+u7+u8

− µm(x)u2, x ∈ Ω, t > 0,
∂u3

∂t = DM∆u3 +
bβm(x)u2u7

u5+u6+u7+u8
− (γm(x) + µm(x))u3, x ∈ Ω, t > 0,

∂u4

∂t = DM∆u4 + γm(x)u3 − µm(x)u4, x ∈ Ω, t > 0,
∂u5

∂t = DH∆u5 + Λh(x) − µhu5 − bβh(x)u5u4

u5+u6+u7+u8
, x ∈ Ω, t > 0,

∂u6

∂t = DH∆u6 +
bβh(x)u5u4

u5+u6+u7+u8

− (γh + µh)u6, x ∈ Ω, t > 0,
∂u7

∂t = DH∆u7 + γhu6 − (αh + µh)u7, x ∈ Ω, t > 0,
∂u8

∂t = DH∆u8 + αhu7 − µhu8, x ∈ Ω, t > 0,
∂ui

∂ν = 0, x ∈ ∂Ω, t > 0, 2 ≤ i ≤ 8,

ui(x, 0) = u0i (x), x ∈ Ω, t > 0, 1 ≤ i ≤ 8.

(3.1)
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Let X := C(Ω̄,R8) be the Banach space with the supremum norm ‖ · ‖X.
Define X+ := C(Ω̄,R8

+), then (X,X+) is a strongly ordered space. Let φ =

(φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8) and

XC := {φ ∈ X
+ : 0 ≤ φ1(x) ≤ C, ∀ x ∈ Ω̄}. (3.2)

By the similar arguments in [14, Lemma 2.2] (see also [19]), together with [21,

Corollary 4] (see also [31, Theorem 7.3.1]), we have the following result:

Lemma 3.1. For every initial value function φ ∈ XC , system (3.1) has a unique

mild solution u(x, t, φ) on (0, τφ) with u(·, 0, φ) = φ, where τφ ≤ ∞. Furthermore,

u(·, t, φ) ∈ XC , ∀ t ∈ (0, τφ) and u(x, t, φ) is a classical solution of (3.1).

Note that for the following scalar reaction-diffusion equation
{
∂w
∂t = D∆w + g(x)− d(x)w, x ∈ Ω, t > 0,
∂w
∂ν = 0, x ∈ ∂Ω, t > 0,

(3.3)

where D > 0, and d(x) and g(x) are continuous and positive functions on Ω̄, we

have the following result.

Lemma 3.2. [19, Lemma 1] The system (3.3) admits a unique positive steady state

w∗(x) which is globally asymptotically stable in C(Ω̄,R+). Moreover, if g(x) ≡
g, d(x) ≡ d, ∀ x ∈ Ω̄, then w∗(x) = g

d .

In the next Lemma, we now show that solutions of system (3.1) exist globally on

[0,∞) and converge to a compact attractor in XC .

Lemma 3.3. For every initial value functions φ ∈ XC, system (3.1) admits a unique

solution u(x, t, φ) on [0,∞) with u(·, 0, φ) = φ and the semiflow Ψ(t) : XC → XC

generated by (3.1) is defined by

Ψ(t)φ = u(·, t, φ), t ≥ 0.

Furthermore, the semiflow Ψ(t) : XC → XC has a global compact attractor in XC ,

∀ t ≥ 0.

Proof. Let

NH(x, t) = u5(x, t) + u6(x, t) + u7(x, t) + u8(x, t). (3.4)

From (3.1), we have that NH(x, t) satisfies{
∂NH

∂t = DH∆NH + Λh(x)− µhNH , x ∈ Ω, t > 0,
∂NH

∂ν = 0, x ∈ ∂Ω, t > 0.
(3.5)

By Lemma 3.2, the system (3.5) admits a positive function H(x) such that

lim
t→∞

NH(x, t) = H(x), uniformly in x ∈ Ω̄. (3.6)

Furthermore, if Λh(x) ≡ Λh, a constant, then H(x) ≡ Λh

µh
.

Let

M(x, t) = u2(x, t) + u3(x, t) + u4(x, t). (3.7)

Then it follows from the first four equations of (3.1) that (u1(x, t),M(x, t)) satisfies




∂u1

∂t = kδ(x)
(
1− u1

C

)
M − (θ(x) + µa(x))u1, x ∈ Ω, t > 0,

∂M
∂t = DM∆M + θ(x)u1 − µm(x)M, x ∈ Ω, t > 0,
∂M
∂ν = 0, x ∈ ∂Ω, t > 0.

(3.8)
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Lemma 3.1 along with (3.4), (3.5), (3.6), and the comparison principle imply

that u5(x, t, φ), u6(x, t, φ), u7(x, t, φ), and u8(x, t, φ) are uniformly bounded and ul-

timately bounded. Similarly, Lemma 3.1 along with (3.7), (3.8), and the comparison

principle imply that u1(x, t, φ), u2(x, t, φ), u3(x, t, φ), and u4(x, t, φ) are uniformly

bounded. Next, we show that ui(x, t, φ), i = 1, 2, 3, 4, is ultimately bounded. By

Lemma 3.1, we have

u1(x, t, φ) ≤ C, for x ∈ Ω̄, t ≥ 0. (3.9)

It then follows from the second equation of (3.1) that
{
∂u2

∂t ≤ DM∆u2 + Cθ(x) − µm(x)u2, x ∈ Ω, t > 0,
∂u2

∂ν = 0, x ∈ ∂Ω, t > 0.
(3.10)

By (3.10), Lemma 3.2, and a comparison argument, it is easy to see that u2(x, t, φ)

is ultimately bounded. Using (3.6), together with the facts that u2(x, t, φ) and

u7(x, t, φ) are ultimately bounded, there exists T1 > 0 and C1 > 0 such that

NH(x, t) ≥ H(x)/2, u2(x, t, φ)u7(x, t, φ) ≤ C1, for x ∈ Ω̄, t ≥ T1. (3.11)

From (3.11) and the third equation of (3.1), we have
{
∂u3

∂t ≤ DM∆u3 +
bβm(x)C1

H(x)/2 − (γm(x) + µm(x))u3, x ∈ Ω, t ≥ T1,
∂u3

∂ν = 0, x ∈ ∂Ω, t ≥ T1.
(3.12)

By (3.12), Lemma 3.2, and a comparison argument, it is easy to see that u3(x, t, φ)

is ultimately bounded, and hence, there exists T2 > 0 and C2 > 0 such that

u3(x, t, φ) ≤ C2, for x ∈ Ω̄, t ≥ T2. (3.13)

From (3.13) and the fourth equation of (3.1), we have
{
∂u4

∂t ≤ DM∆u4 + γm(x)C2 − µm(x)u4, x ∈ Ω, t ≥ T2,
∂u4

∂ν = 0, x ∈ ∂Ω, t ≥ T2.
(3.14)

Again, using (3.12), Lemma 3.2, and a comparison argument, we deduce that

u4(x, t, φ) is ultimately bounded. Thus, Ψ(t) is point dissipative on XC (ultimately

bounded), and forward orbits of bounded subsets of XC for Ψ(t) are bounded (uni-

formly bounded). We note that the first equation in (3.1) has no diffusion term, so

its solution semiflow Ψ(t) is not compact. Since −(θ(x) + µa(x)) < 0, ∀ x ∈ Ω̄, we

can use similar arguments as in [13, Theorem 4.1] (see also [12, Lemma 4.1] and

[20, Theorem 2.6]), and show that Ψ(t) admits a global attractor on XC .

3.1. Homogeneous environment: Basic reproduction number. In this sub-

section, we consider a special case in which the temperature remains approximately

constant across space, i.e. T (x) = T , and thus, all of Λh(x) = Λh, δ(x) = δ, θ(x) =

θ, µa(x) = µa, βm(x) = βm, µm(x) = µm, γm(x) = γm, βh(x) = βh are independent

of x ∈ Ω̄.

In this case, we compute the basic reproduction number, R̄0 which is defined as

the average number of secondary infections generated by a single infected individual

introduced into a completely susceptible population. We will then observe how R̄0

depends on the environmental temperature, T .

In this case, there are two possible disease-free equilibria (DFEs): one is Ē0 =

(0, 0, 0, 0, H̄∗, 0, 0, 0) and the other is Ē1 = (Ā∗, M̄∗

s , 0, 0, H̄
∗, 0, 0, 0), where Ā∗ =
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C
[
1− µm(θ+µa)

kδθ

]
, M̄∗

s = θĀ∗/µm, and H̄∗ = Λh/µh. As mentioned in Remark 3.1,

it can be shown that Ē0 is globally asymptotically stable and Ē1 does not exists if

R̄M < 1, where R̄M = kδθ
µm(θ+µa)

. While this situation asserts a successful avoid-

ance of disease, it is hard to achieve practically as the situation corresponds to a

complete eradication of mosquito population. Therefore, more achievable disease

free situation is the asymptotic stability of Ē1. We assume R̄M > 1 in which Ē1

exists. We linearize the model system at Ē1 and define

F̄ =




0 0 0
bβmM̄

∗

s

H̄∗

0 0 0 0

0 bβh 0 0

0 0 0 0


 ,

and

V̄ =




γm + µm 0 0 0

−γm µm 0 0

0 0 γh + µh 0

0 0 −γh αh + µh


 .

Since F̄ and V̄ are independent of x ∈ Ω̄, it follows from [40, Theorem 3.4] that

R̄0 = r(F̄V̄−1), the spectral radius of F̄V̄−1. By direct computations, we have

V̄
−1 =




1/(γm + µm) 0 0 0

γm/µm(γm + µm) 1/µm 0 0

0 0 1/(γh + µh) 0

0 0 γh/(γh + µh)(αh + µh) 1/(αh + µh)


 ,

and

F̄V̄
−1 =









0 0 Dγh/(γh + µh)(αh + µh) D/(αh + µh)

0 0 0 0

Eγm/µm(γm + µm) E/µm 0 0

0 0 0 0









,

where D =
bβmM

∗

s

H̄∗
and E = bβh. Then the characteristic polynomial of F̄V̄−1 takes

the form

det(F̄V̄−1 − ηI) = η2(η2 − ♦),

where ♦ = DEγmγh
µm(γm+µm)(γh+µh)(αh+µh)

. By [40, Theorem 3.4], we obtain the basic

reproduction number as R̄0 =
√
♦, which provides a threshold for the disease to

persist (R̄0 > 1).

In Fig. 3.1, we show how R̄0 depends on temperature. The value of R̄0 obtained

here is consistent with the previous estimates [4, 3, 16, 33]. In addition, our study

provides the dependence of R̄0 on temperature. In general, R̄0 is less than one

for too high or too low temperatures while it is greater than one in the middle

temperature range. This shows that there is an optimal temperature range for which

dengue epidemics occur. Moreover, the range of optimal temperature depends upon

the carrying capacity of mosquito aquatic phase. The lower the carrying capacity,

the smaller the range of temperature for which R̄0 > 1 and the lower the peak

value of R̄0. With a prevention program such as destroying mosquito larvae or

pupae that significantly lowers the carrying capacity (for example, C < 0.1 in our
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Figure 3.1. The basic reproduction number, R̄0, vs. environmen-

tal temperature, T , for different values of carrying capacity, C.

computation), R̄0 can be brought down to below one for all temperature values and

dengue epidemics can be avoided (Fig. 3.1).

3.2. Heterogeneous environment. We now consider the full model that includes

spatially heterogeneous temperature. The system (3.1) admits two possible DFEs:

E0(x) = (0, 0, 0, 0, H(x), 0, 0, 0) and E1(x) = (A∗(x),M∗

s (x), 0, 0, H(x), 0, 0, 0).

E0(x) corresponds to an eradication of mosquito population while E1(x) corre-

sponds to an eradication of dengue in the presence of mosquito population. Practi-

cal preventive strategies, such as destroying mosquito larvae, using insecticides, and

using mosquito nets, have targets of achieving one or both DFEs. Here, we develop

theoretical formulation of two threshold indices: Mosquito reproduction number

and Infection invasion threshold, related to the stability of E0(x) and E1(x), re-

spectively.

3.2.1. Mosquito reproduction number. Linearizing system (3.8) at (0, 0), we

get




∂u1

∂t = kδ(x)M − (θ(x) + µa(x))u1, x ∈ Ω, t > 0,
∂M
∂t = DM∆M + θ(x)u1 − µm(x)M, x ∈ Ω, t > 0,
∂M
∂ν = 0, x ∈ ∂Ω, t > 0.

(3.15)

Let Π(t) be the solution semigroup generated by (3.15) on C(Ω̄,R2). It is easy to

see that Π(t) is a positive C0-semigroup on C(Ω̄,R2), and its generator B can be

written as

B =

(
−(θ(x) + µa(x)) kδ(x)

θ(x) DM∆− µm(x)

)
.
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Further, B is a closed and resolvent positive operator (see, e.g., [37, Theorem 3.12]).

The eigenvalue problem associated with (3.15) takes the form




λψ1(x) = kδ(x)ψ2(x)− (θ(x) + µa(x))ψ1(x), x ∈ Ω,

λψ2(x) = DM∆ψ2(x) + θ(x)ψ1(x) − µm(x)ψ2(x), x ∈ Ω,
∂ψ2(x)
∂ν = 0, x ∈ ∂Ω.

(3.16)

The first equation of (3.15) has no diffusion term, and hence, the associated solution

semiflow Π(t) is not compact. Since −(θ(x) + µa(x)) < 0, ∀ x ∈ Ω̄, we use the

similar arguments as in Lemma 4.4 and Lemma 4.5 of [13] (see also [22]) to show

the following results.

Lemma 3.4. Let λ∗ := s(B) be the spectral bound of B.

(i) If λ∗ ≥ 0, then λ∗ is the principal eigenvalue of the eigenvalue problem (3.16)

with a strongly positive eigenfunction.

(ii) If λ∗ > 0, then there is a small ǫ0 > 0 such that λ∗ǫ0 > 0, where λ∗ǫ0 is the

principal eigenvalue of the following eigenvalue problem




λψ1(x) = kδ(x)
(
1− ǫ0

C

)
ψ2(x)− (θ(x) + µa(x))ψ1(x), x ∈ Ω,

λψ2(x) = DM∆ψ2(x) + θ(x)ψ1(x)− µm(x)ψ2(x), x ∈ Ω,
∂ψ2(x)
∂ν = 0, x ∈ ∂Ω.

(3.17)

In the following, we shall adopt the results developed in [40, Section 3] (see also

[39]) to define the mosquito reproduction number. To this end, we let

FM (x) =

(
0 kδ(x)

0 0

)
, VM (x) =

(
θ(x) + µa(x) 0

−θ(x) µm(x)

)
. (3.18)

Assume that SM (t) : C(Ω̄,R2) → C(Ω̄,R2) be the C0-semigroup generated by

the following system
(

∂u1

∂t
∂M
∂t

)
=

(
0

DM∆M

)
−VM (x)

(
u1
M

)
, x ∈ Ω, t > 0,

with the boundary condition

∂M

∂ν
= 0, x ∈ ∂Ω, t > 0.

In order to define the mosquito reproduction number, we assume that both aquatic

and susceptible female mosquito are near the state (0, 0), and introduce initial fertile

mosquitos at time t = 0 with the spatial distribution described by ϕ ∈ C(Ω̄,R2).

Then SM (t)ϕ represents the distribution of fertile individuals of female mosquito

at time t ≥ 0. Let LM : C(Ω̄,R2) → C(Ω̄,R2) be defined by

LM (ϕ)(·) =
∫

∞

0

FM (·)(SM (t)ϕ)(·)dt.

Here LM (ϕ)(·) represents the distribution of the total new female mosquito popula-

tion generated by initial fertile individuals of female mosquito, ϕ, and hence, LM is

the next generation operator. We define the spectral radius of LM as the mosquito

reproduction number, RM , that is,

RM := r(LM ).
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Let

YC := {(u01,M0) ∈ C(Ω̄,R2
+) : 0 ≤ u01(x) ≤ C, ∀ x ∈ Ω̄}.

Lemma 3.5. For any (u01(·),M0(·)) ∈ YC , let (u1(·, t),M(·, t)) be the solution of

(3.8) with (u1(·, 0),M(·, 0)) = (u01(·),M0(·)). If RM > 1 and (u01(·),M0(·)) 6= (0, 0),

then we have

lim
t→∞

(u1(x, t),M(x, t)) = (A∗(x),M∗

s (x)), uniformly for x ∈ Ω̄,

where 0 < A∗(x) < C and M∗

s (x) > 0, for all x ∈ Ω̄.

Proof. It can be shown that YC is a positively invariant set for system (3.8), and

hence, we may define the associated solution semiflow Φ(t) : YC → YC by

Φ(t)(u01,M
0) = (u1(·, t, (u01,M0)),M(·, t, (u01,M0))), ∀t ≥ 0, (u01,M

0) ∈ YC ,

where (u1(·, t, (u01,M0)),M(·, t, (u01,M0))) is the solution of (3.8). Note that Φ(t)

is monotone in YC , and strongly monotone in the interior of YC . Also, we can

show that u1(x, t) < C, for all x ∈ Ω̄ and t > 0. The first equation of (3.8) has

no diffusion term, and hence, the associated solution semiflow Φ(t) is not compact.

Since −(θ(x) + µa(x)) < 0, ∀ x ∈ Ω̄, we can use simple comparison arguments

together with similar arguments in [13, Theorem 4.1] (see also [12, Lemma 4.1] and

[20, Theorem 2.6]) to overcome this problem and then we can further show that

Φ(t) admits a global attractor on YC .

By [40, Theorem 3.1] (see also [37, Theorem 3.5]), it follows thatRM−1 and s(B)

have the same sign, that is, s(B) > 0. Then Lemma 3.4 implies that λ∗ := s(B) > 0

is the principal eigenvalue of (3.16) and there is a small ǫ0 > 0 such that λ∗ǫ0 > 0,

where λ∗ǫ0 is the principal eigenvalue of (3.17). Let

Y0 := {(u01,M0) ∈ YC : (u01,M
0) 6= (0, 0)}.

Then we can show that (0, 0) is a uniform weak repeller for Y0 (see, e.g., [14,

Theorem 2.1(ii)]) in the sense that

lim sup
t→∞

‖Φ(t)(u01,M0)− (0, 0)‖ ≥ ǫ0, ∀ (u01,M
0) ∈ Y0.

By [46, Theorem 1.3.3], we can further show that Φ(t) is uniformly persistent with

respect to (Y0, ∂Y0) in the sense that there exists η0 > 0 such that

lim inf
t→∞

‖ Φt(u
0
1,M

0) ‖≥ η0, ∀ (u01,M
0) ∈ Y0.

Using the arguments similar to those in [8, Theorem 2.2] with slight modifications,

we can show that Φ(t) is strictly subhomogeneous in the sense that

Φ(t)(ςu01, ςM
0)) > ςΦ(t)(u01,M

0), ∀ (u01,M0) ≫ 0, ς ∈ (0, 1).

It then follows from [46, Theorem 2.3.2] (see also [12, Theorems 3.2]) that the

conclusions in our theorem are valid.

In the following remark, we give some comments on the case RM < 1.

Remark 3.1. Due to the loss of compactness for system (3.15), we are unable

to show that λ∗ is the principal eigenvalue of the eigenvalue problem (3.16) when
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RM < 1. Thus, it is mathematically difficult to show that the solution of (3.8),

(u1(·, t),M(·, t)), satisfies
lim
t→∞

(u1(x, t),M(x, t)) = (0, 0), uniformly for x ∈ Ω̄. (3.19)

However, if all coefficients of system (3.15) are positive constants (independent

of x, homogeneous environment), then we can use the same arguments as in [13,

Lemma 3.3] to show that λ∗ is the principal eigenvalue of (3.16), and then, a simple

comparison argument leads to the conclusion that (3.19) holds if RM < 1.

3.2.2. Infection invasion threshold. Because of the spatial heterogeneity of tem-

perature, the basic reproduction number, R̄0, defined above can not provide thresh-

old condition for dengue to persist in the case of heterogeneous environment. In

this sub-section we formulate the infection invasion threshold, R0, that describes

the global dynamics of dengue persistence. We assume that RM > 1 asserting the

unstability of E0(x) and existence of E1(x). Linearizing system (3.1) at the disease-

free steady-state E1(x), we get the following system for (u3, u4, u6, u7) components:




∂u3

∂t = DM∆u3 +
bβm(x)M∗

s (x)
H(x) u7 − (γm(x) + µm(x))u3, x ∈ Ω, t > 0,

∂u4

∂t = DM∆u4 + γm(x)u3 − µm(x)u4, x ∈ Ω, t > 0,
∂u6

∂t = DH∆u6 + bβh(x)u4 − (γh + µh)u6, x ∈ Ω, t > 0,
∂u7

∂t = DH∆u7 + γhu6 − (αh + µh)u7, x ∈ Ω, t > 0,
∂ui

∂ν = 0, x ∈ ∂Ω, t > 0, i = 3, 4, 6, 7.

(3.20)

Substituting ui(x, t) = eΛtϕi(x), i = 3, 4, 6, 7, into (3.20), we get the following

associated eigenvalue problem:




Λϕ3(x) = DM∆ϕ3 +
bβm(x)M∗

s (x)
H(x) ϕ7 − (γm(x) + µm(x))ϕ3, x ∈ Ω,

Λϕ4(x) = DM∆ϕ4 + γm(x)ϕ3 − µm(x)ϕ4, x ∈ Ω,

Λϕ6(x) = DH∆ϕ6 + bβh(x)ϕ4 − (γh + µh)ϕ6, x ∈ Ω,

Λϕ7(x) = DH∆ϕ7 + γhϕ6 − (αh + µh)ϕ7, x ∈ Ω,
∂ϕi

∂ν = 0, x ∈ ∂Ω, i = 3, 4, 6, 7.

(3.21)

By a similar argument as in [31, Theorem 7.6.1], we have the following results.

Lemma 3.6. The eigenvalue problem (3.21) admits a principal eigenvalue, denoted

by Λ∗, which is associated with a strongly positive eigenfunction.

In the following, we shall adopt the results developed in [40, Section 3] (see also

[39]) to define the infection invasion threshold for system (3.1). From (3.20), we

define

F(x) =




0 0 0
bβm(x)M∗

s (x)
H(x)

0 0 0 0

0 bβh(x) 0 0

0 0 0 0


 ,

and

V(x) =




γm(x) + µm(x) 0 0 0

−γm(x) µm(x) 0 0

0 0 γh + µh 0

0 0 −γh αh + µh


 .
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Let uI = (u3, u4, u6, u7)
T , DI∆uI = (DM∆u3, DM∆u4, DH∆u6, DH∆u7)

T , and

S(t) : C(Ω̄,R4) → C(Ω̄,R4) be the C0-semigroup generated by the following system
{
∂uI

∂t = DI∆uI − V(x)uI , x ∈ Ω, t > 0,
∂ui

∂ν = 0, x ∈ ∂Ω, t > 0, i = 3, 4, 6, 7.
(3.22)

We assume that the state variables are near the disease-free steady state E1(x) and

the spatial distribution of initial infection is described by φ ∈ C(Ω̄,R4). Then

S(t)φ(x) represents the distribution of those infected members as time evolves,

and hence, the distribution of new infection at time t is F(x)S(t)φ(x). Let L :

C(Ω̄,R4) → C(Ω̄,R4) be defined by

L(φ)(·) =
∫

∞

0

F(·)(S(t)φ)(·)dt.

Here L(φ)(·) represents the distribution of total new infected individuals during

their infection period, and hence, L is the next generation operator. By the idea of

next generation operators (see, e.g., [5, 38, 39]), we define the spectral radius of L

as the infection invasion threshold for system (3.1), that is,

R0 := r(L).

By [40, Theorem 3.1] (see also [37, Theorem 3.5]), we have the following obser-

vation.

Lemma 3.7. R0 − 1 and Λ∗ have the same sign.

Furthermore, by [40, Theorem 3.2], it can also be shown that R0 can be deter-

mined by a principal eigenvalue of the elliptic eigenvalue problem, as stated in the

following lemma.

Lemma 3.8. Consider the eigenvalue problem
{
−DI∆ϕI + V(x)ϕI = ξF(x)ϕI , x ∈ Ω,
∂ϕI

∂ν = 0, x ∈ ∂Ω,
(3.23)

where ϕI = (ϕ3, ϕ4, ϕ6, ϕ7)
T , DI∆ϕI = (DM∆ϕ3, DM∆ϕ4, DH∆ϕ6, DH∆ϕ7)

T ,

and ∂ϕI

∂ν = (∂ϕ3

∂ν ,
∂ϕ4

∂ν ,
∂ϕ6

∂ν ,
∂ϕ7

∂ν )T . If system (3.23) admits a unique positive eigen-

value ξ0 with a positive eigenfunction, then R0 = 1
ξ0
.

We next prove that the infection invasion threshold R0 can describe the global

dynamics of system (3.1), providing the condition whether the disease dies out

(R0 < 1) or persists (R0 > 1). For this, we first prove the following lemma that

will play an important role in establishing the persistence of (3.1).

Lemma 3.9. Suppose u(x, t, φ) is the solution of system (3.1) with u(·, 0, φ) = φ ∈
XC.

(i) If φi(·) 6≡ 0, for i = 1, 2, 4, then

ui(x, t, φ) > 0, for x ∈ Ω̄, t > 0, and 1 ≤ i ≤ 8. (3.24)

(ii) If φi(·) 6≡ 0, for i = 1, 2, 4, and RM > 1, then there exists σ0 > 0 such that

lim inf
t→∞

ui(x, t, φ) ≥ σ0, uniformly for x ∈ Ω̄, and i = 1, 2, 5. (3.25)
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(iii) Assume that φi(·) 6≡ 0, for i = 1, 2, 4, and RM > 1. If there exists a σ1 > 0

such that

lim inf
t→∞

u4(x, t, φ) ≥ σ1, uniformly for x ∈ Ω̄, (3.26)

then there exists a σ > 0 such that

lim inf
t→∞

ui(x, t, φ) ≥ σ, uniformly for x ∈ Ω̄, and 1 ≤ i ≤ 8. (3.27)

Proof. Part(i). Obviously, (3.24) holds for the case where i = 5. By the positivity

of solutions (see Lemma 3.1) and the fourth equation of (3.1), we get
{
∂u4

∂t ≥ DM∆u4 − µm(x)u4, x ∈ Ω, t > 0,
∂u4

∂ν = 0, x ∈ ∂Ω, t > 0.
(3.28)

Since φ4(·) 6≡ 0, it follows from (3.28), the strong maximum principle (see, e. g., [28,

p. 172, Theorem 4]) and the Hopf boundary lemma (see, e.g., [28, p. 170, Theorem

3]) that

u4(x, t, φ) > 0, for x ∈ Ω̄, t > 0. (3.29)

Claim 1.

u6(x, t, φ) > 0, for x ∈ Ω̄, t > 0. (3.30)

From the positivity of solutions and the sixth equation of (3.1), it follows that
{
∂u6

∂t ≥ DH∆u6 − (γh + µh)u6, x ∈ Ω, t > 0,
∂u6

∂ν = 0, x ∈ ∂Ω, t > 0.
(3.31)

Suppose, by contradiction, there exists x6 ∈ Ω̄ and t6 > 0 such that u6(x6, t6, φ) =

0. For the case where x6 ∈ ∂Ω, we apply the Hopf boundary lemma and get
∂u6(x6,t6,φ)

∂ν < 0, which is impossible. For the case where x6 ∈ Ω, we apply the

strong maximum principle ([28, p. 174, Theorem 7]), we obtain that

u6(x, t, φ) ≡ 0, ∀ x ∈ Ω̄, t ≤ t6. (3.32)

From (3.32) and the sixth equation of (3.1), it follows that

u5(x, t, φ)u4(x, t, φ) ≡ 0, ∀ x ∈ Ω̄, t ≤ t6, (3.33)

which contradicts either the fifth equation of (3.1) or (3.29). Thus, Claim 1 is

proved.

By (3.30) and the similar arguments to those in Claim 1, we can conclude that

(3.24) holds for the cases where i = 7, i = 8 and i = 3. Since φ2(·) 6≡ 0, it

follows from the strong maximum principle and the Hopf boundary lemma that

(3.24) holds for the case where i = 2. Next, we prove that (3.24) holds for the case

where i = 1. Suppose, by contradiction, there exists x1 ∈ Ω̄ and t1 > 0 such that

u1(x1, t1, φ) = 0. Then it follows from the first equation of (3.1) that

0 =
∂u1(x1, t1, φ)

∂t
= kδ(x1)[u2(x1, t1, φ) + u3(x1, t1, φ) + u4(x1, t1, φ)],

which implies that u2(x1, t1, φ) = 0, a contradiction. Thus, we complete the proof

of Part (i).

Part(ii). Recall that M(x, t) = u2(x, t) + u3(x, t) + u4(x, t) is defined in (3.7),

and (u1(x, t),M(x, t)) satisfies system (3.8) with (u1(·, 0),M(·, 0)) = (φ1(·), φ2(·) +
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φ3(·) +φ4(·)) 6≡ (0, 0). Since (u1(·, 0),M(·, 0)) 6≡ (0, 0) and RM > 1, it follows from

Lemma 3.5 that

lim
t→∞

(u1(x, t),M(x, t)) = (A∗(x),M∗

s (x)), uniformly for x ∈ Ω̄.

For any g ∈ C(Ω̄,R), we define g = maxx∈Ω̄ g(x), ĝ = minx∈Ω̄ g(x). Then there

exists τ1 > 0 such that

u1(x, t) ≥
1

2
A∗(x) ≥ 1

2
Â, u4(x, t) ≤M(x, t) ≤ 2M∗

s (x) ≤ 2Ms, ∀ x ∈ Ω̄, t ≥ τ1.

(3.34)

In view of (3.4) and (3.6), it follows that there exists τ2 ≥ τ1 such that

Ĥ/2 ≤ NH(x, t) ≤ 2H, ∀ x ∈ Ω̄, t ≥ τ2. (3.35)

From (3.34) and the second equation of system (3.1), we have
{
∂u2

∂t ≥ DM∆u2 +
1
2 θ̂ Â− [bβm + µm]u2, x ∈ Ω, t ≥ τ1,

∂u2

∂ν = 0, x ∈ ∂Ω, t ≥ τ1,
(3.36)

where we have used the fact that u5

u5+u6+u7+u8

≤ 1. Applying the standard parabolic

comparison theorem (see, e.g., [31, Theorem 7.3.4]) and Lemma 3.2 again, we obtain

lim inf
t→∞

u2(x, t) ≥ L2 :=
1
2 θ̂ Â

bβm + µm
, uniformly for x ∈ Ω̄. (3.37)

From (3.34), (3.35) and the fifth equation of system (3.1), we have
{
∂u5

∂t ≥ DH∆u5 + Λ̂h − [µh +
2bβh Ms

Ĥ/2
]u5, x ∈ Ω, t ≥ τ2,

∂u5

∂ν = 0, x ∈ ∂Ω, t ≥ τ2.
(3.38)

By the standard parabolic comparison theorem (see, e.g., [31, Theorem 7.3.4]) and

Lemma 3.2, we obtain

lim inf
t→∞

u5(x, t) ≥ L5 :=
Λ̂h

µh +
4bβh Ms

Ĥ

, uniformly for x ∈ Ω̄. (3.39)

By (3.34), (3.39), and (3.37), the proof of Part (ii) is complete.

Part(iii). By (3.25) and (3.26), it suffices to show that (3.27) holds for i =

3, 6, 7, 8. From (3.26), (3.39) and (3.37), there exists τ3 ≥ τ2 such that

u4(x, t) ≥
1

2
σ1, u5(x, t) ≥

1

2
L5, and u2(x, t) ≥

1

2
L2, ∀ x ∈ Ω̄, t ≥ τ3. (3.40)

From (3.35), (3.40) and the sixth equation of system (3.1), we have
{
∂u6

∂t ≥ DH∆u6 +
bβ̂hL5σ1

8H
− (γh + µh)u6, x ∈ Ω, t ≥ τ3,

∂u6

∂ν = 0, x ∈ ∂Ω, t ≥ τ3.
(3.41)

Applying the standard parabolic comparison theorem (see, e.g., [31, Theorem 7.3.4])

and Lemma 3.2, we obtain

lim inf
t→∞

u6(x, t) ≥ L6 :=
bβ̂hL5σ1

8H(γh + µh)
, uniformly for x ∈ Ω̄. (3.42)

By (3.42), there exists τ4 ≥ τ3 such that

u6(x, t) ≥
1

2
L6, ∀ x ∈ Ω̄, t ≥ τ4. (3.43)
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From (3.43) and the seventh equation of system (3.1), we have

{
∂u7

∂t ≥ DH∆u7 +
1
2γhL6 − (αh + µh)u7, x ∈ Ω, t ≥ τ4,

∂u7

∂ν = 0, x ∈ ∂Ω, t ≥ τ4.
(3.44)

Then

lim inf
t→∞

u7(x, t) ≥ L7 :=
γhL6

2(αh + µh)
, uniformly for x ∈ Ω̄. (3.45)

By (3.45), there exists τ5 ≥ τ4 such that

u7(x, t) ≥
1

2
L7, ∀ x ∈ Ω̄, t ≥ τ5. (3.46)

In view of (3.46) and the last equation of system (3.1), we have

{
∂u8

∂t ≥ DH∆u8 +
1
2αhL7 − µhu8, x ∈ Ω, t ≥ τ5,

∂u8

∂ν = 0, x ∈ ∂Ω, t ≥ τ5.
(3.47)

Then

lim inf
t→∞

u8(x, t) ≥ L8 :=
αhL7

2µh
, uniformly for x ∈ Ω̄. (3.48)

By (3.35), (3.40), (3.46), and the third equation of system (3.1), it follows that

{
∂u3

∂t ≥ DM∆u3 +
bβ̂mL2L7

8H
− (γm + µm)u3, x ∈ Ω, t ≥ τ5,

∂u3

∂ν = 0, x ∈ ∂Ω, t ≥ τ5.
(3.49)

Then

lim inf
t→∞

u3(x, t) ≥ L3 :=
bβ̂mL2L7

8H(γm + µm)
, uniformly for x ∈ Ω̄. (3.50)

From (3.42), (3.45), (3.48), and (3.50), we complete the proof of Part (iii).

As mentioned earlier, we prove in the following theorem that dengue dynamics

can be globally described by the infection invasion threshold R0:

Theorem 3.1. Suppose u(x, t, φ) is the solution of system (3.1) with u(·, 0, φ) =

φ ∈ XC , where XC is given in (3.2). Assume that RM > 1. Then the following

statements hold.

(i) If R0 < 1, then the disease-free steady state E1(x) is globally attractive in the

sense that if (φ1(·), φ2(·)) 6≡ (0, 0), we have

lim
t→∞

u(x, t, φ) = E1(x), uniformly for all x ∈ Ω̄.

(ii) If R0 > 1, then system (3.1) admits at least one (componentwise) positive

steady state û(x) and there exists a σ > 0 such that for any φ ∈ XC with

φi(·) 6≡ 0, ∀ i = 1, 2, 4, we have

lim inf
t→∞

ui(x, t) ≥ σ, uniformly for all x ∈ Ω̄, ∀ 1 ≤ i ≤ 8.
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Proof. Part (i). We first assume that R0 < 1. It then follows from Lemma 3.7 that

Λ∗ < 0. By the continuity, there is an ǫ1 > 0 such that Λ∗

ǫ1 < 0, where Λ∗

ǫ1 is the

principal eigenvalue of




Λϕ3(x) = DM∆ϕ3 +
bβm(x)[M∗

s (x)+ǫ1]
H(x) ϕ7 − (γm(x) + µm(x))ϕ3, x ∈ Ω,

Λϕ4(x) = DM∆ϕ4 + γm(x)ϕ3 − µm(x)ϕ4, x ∈ Ω,

Λϕ6(x) = DH∆ϕ6 +
bβh(x)[H+ǫ1]

H(x) ϕ4 − (γh + µh)ϕ6, x ∈ Ω,

Λϕ7(x) = DH∆ϕ7 + γhϕ6 − (αh + µh)ϕ7, x ∈ Ω,
∂ϕi

∂ν = 0, x ∈ ∂Ω, i = 3, 4, 6, 7.

(3.51)

By the positivity of solutions, (3.4), (3.6), (3.7), and Lemma 3.5, it follows that

there is a t1 := t1(φ) such that

u2(x, t, φ) ≤M∗

s (x) + ǫ1, u5(x, t, φ) ≤ H(x) + ǫ1, NH(x, t, φ) ≥ H(x) − ǫ1,

∀ t ≥ t1, x ∈ Ω̄.

From the third, fourth, sixth, and seventh equations of system (3.1), it follows that




∂u3

∂t ≤ DM∆u3 +
bβm(x)[M∗

s (x)+ǫ1]
H(x)−ǫ1

u7 − (γm(x) + µm(x))u3, x ∈ Ω, t ≥ t1,
∂u4

∂t = DM∆u4 + γm(x)u3 − µm(x)u4, x ∈ Ω, t ≥ t1,
∂u6

∂t ≤ DH∆u6 +
bβh(x)[H+ǫ1]
H(x)−ǫ1

u4 − (γh + µh)u6, x ∈ Ω, t ≥ t1,
∂u7

∂t = DH∆u7 + γhu6 − (αh + µh)u7, x ∈ Ω, t ≥ t1,
∂ui

∂ν = 0, x ∈ ∂Ω, t ≥ t1, i = 3, 4, 6, 7.

(3.52)

We may assume that ϕǫ1I (x) := (ϕǫ13 (x), ϕǫ14 (x), ϕǫ16 (x), ϕǫ17 (x)) is a strongly positive

eigenfunction corresponding to Λ∗

ǫ1 (see also Lemma 3.6). For any given φ ∈ XC ,

there exists some ζ > 0 such that

(u3(x, t1, φ), u4(x, t1, φ), u6(x, t1, φ), u7(x, t1, φ)) ≤ ζϕǫ1I (x), ∀ x ∈ Ω̄.

The comparison principle implies that

(u3(x, t, φ), u4(x, t, φ), u6(x, t, φ), u7(x, t, φ)) ≤ ζeΛ
∗

ǫ1
(t−t1)ϕǫ1I (x), ∀ x ∈ Ω̄, t ≥ t1,

and it then follows that lim
t→∞

(u3(x, t, φ), u4(x, t, φ), u6(x, t, φ), u7(x, t, φ)) = 0 uni-

formly for x ∈ Ω̄. Then the equation u5 in (3.1) is asymptotic to system (3.5), and

hence, it follows from Lemma 3.2 and the theory for asymptotically autonomous

semiflows (see, e.g., [36, Corollary 4.3]) that

lim
t→∞

u5(x, t) = H(x) uniformly in x ∈ Ω̄.

Similarly, the equations (u1, u2) in (3.1) are asymptotic to system (3.8), and it

follows from Lemma 3.5 and [36, Corollary 4.3] that

lim
t→∞

(u1(x, t), u2(x, t)) = (A∗(x),M∗

s (x)), uniformly for x ∈ Ω̄. (3.53)

Thus, Part (i) is proved.

We are ready to prove Part (ii). Let

W0 = {φ ∈ XC : φ1(·) 6≡ 0, φ2(·) 6≡ 0 and φ4(·) 6≡ 0},
and

∂W0 = XC\W0 = {φ ∈ XC : φ1(·) ≡ 0 or φ2(·) ≡ 0 or φ4(·) ≡ 0}.
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Recall that Ψ(t) : XC → XC is the solution semiflows associated with system (3.1).

By Lemma 3.9, it follows that for any φ ∈ W0, we have ui(x, t, φ) > 0, ∀ x ∈ Ω̄, t >

0, i = 1, 2, 4. In other words, Ψ(t)W0 ⊆ W0, ∀ t ≥ 0. Let

M∂ := {φ ∈ ∂W0 : Ψ(t)φ ∈ ∂W0, ∀ t ≥ 0},

and ω(φ) be the omega limit set of the orbit O+(φ) := {Ψ(t)φ : t ≥ 0}.
Claim 1. ω(ψ) ⊆ {E0(x)} ∪ {E1(x)}, ∀ ψ ∈M∂ .

Since ψ ∈ M∂, we have Ψ(t)ψ ∈ ∂W0, ∀ t ≥ 0, that is, u1(·, t, ψ) ≡ 0 or

u2(·, t, ψ) ≡ 0 or u4(·, t, ψ) ≡ 0, ∀ t ≥ 0. In case where u4(·, t, ψ) ≡ 0, ∀ t ≥ 0.

Then it follows from the fourth equation and the sixth equation of system (3.1) that

u3(·, t, ψ) ≡ 0, ∀ t ≥ 0, and u6(·, t, ψ) satisfies
{
∂u6

∂t = DH∆u6 − (γh + µh)u6, x ∈ Ω, t > 0,
∂u6

∂ν = 0, x ∈ ∂Ω, t > 0,

and hence,

lim
t→∞

u6(x, t, ψ) = 0, uniformly for x ∈ Ω̄. (3.54)

In view of (3.54), the seventh equation of (3.1), and the theory for asymptotically

autonomous semiflows (see, e.g., [36, Corollary 4.3]), we have

lim
t→∞

u7(x, t, ψ) = 0, uniformly for x ∈ Ω̄. (3.55)

Similarly, (3.55) and the eighth equation of (3.1) imply that

lim
t→∞

u8(x, t, ψ) = 0, uniformly for x ∈ Ω̄.

The equations (u1, u2) in (3.1) are asymptotic to system (3.8), and hence, (3.53) is

valid. Thus,

lim
t→∞

u(x, t, ψ) = E1(x), uniformly for all x ∈ Ω̄. (3.56)

In case where u4(·, t̂0, ψ) 6≡ 0, for some t̂0 ≥ 0. Then we can show that u4(x, t, ψ) >

0, for all x ∈ Ω̄ and t > t̂0, and hence, u1(·, t, ψ) ≡ 0 or u2(·, t, ψ) ≡ 0, for all t > t̂0.

In case where u2(·, t, ψ) ≡ 0, for all t > t̂0. By the second equation of (3.1), we

have u1(·, t, ψ) ≡ 0, for all t > t̂0. Then it is easy to show that

lim
t→∞

u(x, t, ψ) = E0(x), uniformly for all x ∈ Ω̄. (3.57)

In case where u2(·, t̂1, ψ) 6≡ 0, for some t̂1 > t̂0. Then we can show that u2(x, t, ψ) >

0, for all x ∈ Ω̄ and t > t̂1, and hence, u1(·, t, ψ) ≡ 0, for all t > t̂1. On the other

hand, we substitute u1(·, t, ψ) ≡ 0, t > t̂1 into the first equation of (3.1), and we

get a contradiction that u2(·, t, ψ) ≡ 0, for all t > t̂1. Thus, this subcase cannot

happen and Claim 1 is proved.

Since R0 > 1, it follows from Lemma 3.7 that Λ∗ > 0. By continuity, there is an

ǫ2 > 0 such that Λ∗

ǫ2 > 0, where Λ∗

ǫ2 is the principal eigenvalue of
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Λϕ3(x) = DM∆ϕ3 +
bβm(x)[M∗

s (x)−ǫ2]
H(x)+4ǫ2

ϕ7 − (γm(x) + µm(x))ϕ3, x ∈ Ω,

Λϕ4(x) = DM∆ϕ4 + γm(x)ϕ3 − µm(x)ϕ4, x ∈ Ω,

Λϕ6(x) = DH∆ϕ6 +
bβh(x)[H−ǫ2]
H(x)+4ǫ2

ϕ4 − (γh + µh)ϕ6, x ∈ Ω,

Λϕ7(x) = DH∆ϕ7 + γhϕ6 − (αh + µh)ϕ7, x ∈ Ω,
∂ϕi

∂ν = 0, x ∈ ∂Ω, i = 3, 4, 6, 7.

(3.58)

Claim 2. E1(x) is a uniform weak repeller for W0 in the sense that

lim sup
t→∞

‖Ψ(t)φ− E1(x)‖ ≥ ǫ2, ∀ φ ∈ W0.

Suppose, by contradiction, there exists φ0 ∈ W0 such that

lim sup
t→∞

‖Ψ(t)φ0 − E1(x)‖ < ǫ2.

Then there exists t2 > 0 such that for all t ≥ t2, x ∈ Ω̄, we have

u2(x, t, φ0) > M∗

s (x)− ǫ2, H(x) + ǫ2 > u5(x, t, φ0) > H(x)− ǫ2,

and H(x) + 4ǫ2 > NH(x, t, φ0).

From the third, fourth, sixth, and seventh equations of system (3.1), it follows that




∂u3

∂t ≥ DM∆u3 +
bβm(x)[M∗

s (x)−ǫ2]
H(x)+4ǫ2

u7 − (γm(x) + µm(x))u3, x ∈ Ω, t ≥ t2,
∂u4

∂t = DM∆u4 + γm(x)u3 − µm(x)u4, x ∈ Ω, t ≥ t2,
∂u6

∂t ≥ DH∆u6 +
bβh(x)[H−ǫ2]
H(x)+4ǫ2

u4 − (γh + µh)u6, x ∈ Ω, t ≥ t2,
∂u7

∂t = DH∆u7 + γhu6 − (αh + µh)u7, x ∈ Ω, t ≥ t2,
∂ui

∂ν = 0, x ∈ ∂Ω, t ≥ t2, i = 3, 4, 6, 7.

(3.59)

Since φ0 ∈ W0, it follows from Lemma 3.9 (i) that ui(x, t2, φ0) > 0, for all x ∈ Ω̄,

i = 3, 4, 6, 7. Then there exists some ζ2 > 0 such that

(u3(x, t2, φ0), u4(x, t2, φ0), u6(x, t2, φ0), u7(x, t2, φ0)) ≥ ζ2ϕ
ǫ2
I (x), ∀ x ∈ Ω̄,

where ϕǫ2I (x) := (ϕǫ23 (x), ϕǫ24 (x), ϕǫ26 (x), ϕǫ27 (x)) is a strongly positive eigenfunction

corresponding to Λ∗

ǫ2 . The comparison principle implies that

(u3(x, t, φ0), u4(x, t, φ0), u6(x, t, φ0), u7(x, t, φ0)) ≥ ζ2e
Λ∗

ǫ2
(t−t2)ϕǫ2I (x),

∀ x ∈ Ω̄, t ≥ t2.

Since Λ∗

ǫ2 > 0, it follows that ui(x, t, φ0), i = 3, 4, 5, 7, is unbounded. This contra-

diction proves the Claim 2.

Since RM > 1, it follows from [40, Theorem 3.1] (see also [37, Theorem 3.5])

that s(B) > 0, where s(B) is given in Lemma 3.4. By the similar arguments in

Lemma 4.4 and Lemma 4.5 of [13] (see also [22] and Lemma 3.4), we can deduce

that λ∗ := s(B) > 0 is the principal eigenvalue of (3.16), and there is a small ǫ3 > 0

such that λ∗ǫ3 > 0, where λ∗ǫ3 is the principal eigenvalue of the following eigenvalue

problem




λψ1(x) = kδ(x)
(
1− ǫ3

C

)
ψ2(x)− (θ(x) + µa(x))ψ1(x), x ∈ Ω,

λψ2(x) = DM∆ψ2(x) + θ(x)ψ1(x)− [ bβm(x)ǫ3
H(x)−ǫ3

+ µm(x)]ψ2(x), x ∈ Ω,
∂ψ2(x)
∂ν = 0, x ∈ ∂Ω.

(3.60)
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Then we can use the similar arguments in Claim 2 to show the following result:

Claim 3. E0(x) is a uniform weak repeller for W0 in the sense that

lim sup
t→∞

‖Ψ(t)φ− E0(x)‖ ≥ ǫ3, ∀ φ ∈ W0.

Define a continuous function p : XC → [0,∞) by

p(φ) := min{min
x∈Ω̄

φ1(x), min
x∈Ω̄

φ2(x), min
x∈Ω̄

φ4(x)}, ∀ φ ∈ XC .

By Lemma 3.9 (i), it follows that p−1(0,∞) ⊆ W0 and p has the property that if

p(φ) > 0 or φ ∈ W0 with p(φ) = 0, then p(Ψ(t)φ) > 0, ∀ t > 0. That is, p is

a generalized distance function for the semiflow Ψ(t) : XC → XC (see, e.g., [32]).

From the above claims, it follows that any forward orbit of Ψ(t) in M∂ converges to

{E0(x)}∪{E1(x)}. For i = 0, 1, {Ei(x)} is isolated in XC andW s({Ei(x)})∩W0 =

∅, where W s({Ei(x)}) is the stable set of {Ei(x)} (see [32]). It is obvious that no

subset of {E0(x)} ∪ {E1(x)} forms a cycle in ∂W0. By Lemma 3.3, the semiflow

Ψ(t) : XC → XC has a global compact attractor in XC , ∀ t ≥ 0. Then it follows

from [32, Theorem 3] that there exists a σ1 > 0 such that

min
ψ∈ω(φ)

p(ψ) > σ1, ∀ φ ∈ W0.

Hence, lim inf
t→∞

u4(·, t, φ) ≥ σ1, ∀ φ ∈ W0. From Lemma 3.9 (iii), there exists a σ > 0

such that

lim inf
t→∞

ui(·, t, φ) ≥ σ, ∀ φ ∈ W0, 1 ≤ i ≤ 8.

Hence, the uniform persistence stated in the conclusion (ii) hold. By [20, Theorem

3.7 and Remark 3.10], it follows that Ψ(t) : W0 → W0 has a global attractor A0.

Using [20, Theorem 4.7], we deduce that Ψ(t) admits a steady-state ũ(·) ∈ W0. By

Lemma 3.9 (i), we can further conclude that ũ(·) is a positive steady state of (3.1).

We complete the proof of Part (ii).

4. Simulation results. For simplicity we consider Ω = [0, L] ⊂ R. Further-

more, we can take L = 1 by transforming DH → DH/L
2, DM → DM/L

2, and

T (x) → T (xL). For illustration purposes, we consider a linearly decay func-

tion for temperature, T (x), to represent a spatial variation of the environmental

temperature. T (0) = T0 and T (1) = T1 stand for temperatures of a warmer

place and a cooler place, respectively, while temperature in between is given by

T (x) = (T1 − T0)x + T0. An explicit expression for Λh(x) is not available. To

approximate Λh(x), we assume that the human populations without infection and

mobility remain constant, and take Λ(x) = µh(Hs+He+Hi+Hr) for the purpose

of model simulation.

4.1. Solution methodology. We obtain solutions of the system (3.1) using finite

element method. We assume that an affine family of simplicial triangulations {Th}
is given for Ω and define

U = {v = (v1, · · · , v8)T , vi ∈ H1(Ω), i = 1, · · · , 8}.
We denote the linear finite element space associated with Th by Uh and (uh1 , · · · , uh8)T
by uh. Since the test functions vhi (i = 1, · · · , 8) in the weak formulation are linearly
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independent of each other, a linear finite element solution uh(t) ∈ Uh, t ∈ (0, tf ] for

the system (3.1) is defined by the weak formulation in the vector form as follows.

∫

Ω

(vh)T
∂uh

∂t
dx+

∫

Ω

(
dvh

dx

)T (
D
∂uh

∂x

)
dx =

∫

Ω

(vh)Tf (uh) dx, ∀vh ∈ U
h,

(4.1)

where D = diag(0, DM , DM , DM , DH , DH , DH , DH) and f denotes the right-hand-

side functions of (3.1) except diffusion terms.

Let Ne and Nv = Ne + 1 denote the number of the elements and vertices of Th,
respectively, and φj be the linear basis function associated with the j-th vertex, xj .

Then we can express the solution uh as

uh =

Nv∑

j=1

uj(t)φj(x). (4.2)

Denote the unknown vector as

U =
(
u11, · · · , u18, u21, · · · , u28, · · · , · · · , uNv

1 , · · · , uNv8

)T
. (4.3)

Inserting (4.2) into (4.1) and taking vh = φjei (i = 1, · · · , 8, j = 1, ..., Nv) succes-

sively, we obtain the matrix form of the semi-discrete system as

M
dU

dt
+AU = F (uh), (4.4)

whereM andA are the mass and stiffness matrices, respectively. Denote the matrix

of basis functions as

Φ = [φ1I8, · · · , φNv
I8] (4.5)

where I8 is the identity matrix of size 8. Then the matrices M and A, each of size

8Nv × 8Nv, are given by

M =

∫

Ω

ΦTΦ dx, A =

∫

Ω

dΦT

dx

(
D
dΦ

dx

)
dx. (4.6)

Similarly, the right-hand side vector F of size 8Nv × 1 is given by

F =

∫

Ω

ΦTf(uh) dx. (4.7)

Regarding the time discretization, we denote the numerical approximation of the

solution at t = tn by Un. Applying the backward Euler method to (4.4), we get

M
Un+1 −Un

∆tn
+AUn+1 = F̃ , (4.8)

where ∆tn = tn+1 − tn and F̃ is an approximation of F at time tn. One simple

choice for F̃ is to explicitly compute F using the value of uh at time tn. We solve

the resulting algebraic system using MATLAB.
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4.2. Disease outcome. We mainly focus on the spatial distribution of three epi-

demiologically important quantities, namely dengue prevalence (%), new infection,

and the total infection over an epidemic period, computed using our model as

100(u6 + u7)/utot, bβmu2u7/utot, and
∫ tf
0

bβmu2u7

utot
dt, respectively, where utot =

u5 + u6 + u7 + u8. For our base case computation, we use T0 = 35◦C, T1 = 10◦C,

DM = DH = 0.0001, and the remaining parameters as in Table 2.1. To allow the

mobility to both cooler and warmer places, we introduce the initial infected popu-

lation in the middle of the domain. Since, a dengue epidemic is usually over by 6

months, we take tf = 180 days.
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Figure 4.1. Spatio-temporal distribution of prevalence (left) and

new infection (right) during an epidemic. Here, Tm = 22.5◦C and

∆T = 25◦C, and DM = DH = 0.0001.
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Figure 4.2. Distribution of prevalence (left) and new infection

(middle) at different times and the total infection during an epi-

demic (right). Here, Tm = 22.5◦C and ∆T = 25◦C, and DM =

DH = 0.0001.

After introduction of initial infected population in the middle of the domain,

the prevalence and new infection increase in the middle for the first three months,

and then they slowly appear to increase towards sides due to mobility of humans

and vectors (Figs. 4.1, 4.2). Because of spatial heterogeneity of the temperature

profile, the distribution eventually becomes asymmetric with more new infections

generated towards warmer sides. As a result, the warmer place suffers from a higher

total number of infections during the epidemic (Fig. 4.2, right). Compared to new

infections and the total infection, the prevalence in 6 month remains more symmetric

with slightly higher prevalence towards cooler place (Fig. 4.2, left). During the

entire course of epidemic, the peak prevalence occurred at location x = 0.27 in
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t = 102 days, and the peak new infection occurred at location x = 0.26 in t = 105

days.

4.3. Effect of temperature heterogeneity. To study how the spatial distribu-

tion of disease outcome is affected by temperature heterogeneity, we consider two

different temperature profiles: one with the same mid value (Tm = 0.5 ∗ (T0 + T1))

but different endpoint difference (∆T = T0 − T1) and another with the same ∆T

but different Tm.

First, we fixed Tm at the base case (Tm = 22.5◦C), and changed ∆T from the

base case (∆T = 25◦C) to a lower value, ∆T = 15◦C (Fig. 4.3, upper panel), and

a higher value, ∆T = 35◦C (Fig. 4.3, lower panel). Initial increase of prevalence

(Fig. 4.3, left) as well as new infection (Fig. 4.3, middle) in the middle region are

higher for higher ∆T . In a long run, infection spreads widely towards the sides for

lower ∆T , while for higher ∆T , the infection is more concentrated in the middle

region with less spread towards the sides. This is because, with higher ∆T , the

temperatures at two ends become either too low or too high, thereby causing less

infection. As a result, the total infection during epidemic is more widely distributed

across the region for a lower value of ∆T (Fig. 4.3, right). This shows that a uniform

temperature across space has tendency to decrease infection in the middle for the

initial period of infection, but has tendency to spread widely across space during

the epidemic.
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Figure 4.3. Distribution of prevalence (left) and new infection

(middle) at different times and the total infection during an epi-

demic (right) for the end point temperature difference ∆T = 15◦C

(upper panel) and ∆T = 35◦C (lower panel). Here Tm = 22.5◦C

and DM = DH = 0.0001.

Next, we fixed ∆T = 25◦C (base case), and considered two temperature profiles

with a lower mean temperature (Tm = 15◦C) (Fig. 4.4, upper panel) and a higher

mean temperature (Tm = 30◦C) (Fig. 4.4, lower panel). In this case, the infection
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did not grow in the middle for lower Tm as opposed to the pattern seen in higher

values of Tm. Both prevalence (Fig. 4.4, left) and new infection (Fig. 4.4, middle)

diffuse towards warmer temperature side for lower Tm and cooler temperature side

for higher Tm. Because of the difference in mean temperature, the total infection

during epidemic is more concentrated towards the warmer side for lower Tm (Fig.

4.4, upper panel, right) and towards the cooler side for higher Tm (Fig. 4.4, lower

panel, right). Therefore, for the same endpoint temperature difference ∆T , the

lower the mean temperature, the higher the infection concentration towards the

warmer place.
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Figure 4.4. Distribution of prevalence (left) and new infection

(middle) at different times and the total infection during an epi-

demic (right) for the mean temperature Tm = 15◦C (upper panel)

and Tm = 30◦C (lower panel). Here ∆T = 25◦C and DM = DH =

0.0001.

4.4. Effect of human and vector mobility. Due to lack of information about

spatial mobility of disease among mosquito population and human population, we

used the same value of DM and DH for the base case. In this section, we study

how the disease outcomes are changed if the ratio of these diffusion coefficients is

altered (Fig. 4.5). Clearly there are some effects on disease outcomes when the

ratio is changed to 10-fold lower mosquito mobility, i.e. DM/DH = 0.1 (Fig. 4.5,

upper panel) and to 10-fold higher mosquito mobility, i.e. DM/DH = 10 (Fig. 4.5,

lower panel). However, the effect seems less pronounced compared to the effects

of temperature heterogeneity. Therefore, while mobility is significantly effective in

spatial spread of dengue, it is less sensitive to whether the disease moves through

vector movement or human movement.

5. Conclusion. Epidemiological data indicate that dengue fever is one of the most

rapidly spreading vector-borne diseases, thus spatial expansion of dengue epidemic
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Figure 4.5. Distribution of prevalence (left) and new infection

(middle) at different times and the total infection during an epi-

demic (right) for DM/DH = 0.1 (upper panel) and DM/DH = 10

(lower panel). Here Tm = 22.5◦C and ∆T = 25◦C.

poses serious public health concerns worldwide. In this paper, we provide a mathe-

matical model to describe spatial spread of dengue. Our model particularly focuses

on spatial heterogeneity of environmental temperature along with human and vector

mobility. Experimentally derived temperature-dependent entomological and dengue

dynamics parameters are some of the important features of our model.

We used our model to explicitly formulate the basic reproduction number (R̄0)

that provides temperature-dependent condition for the disease to die out (R̄0 < 1)

or infection to persist (R̄0 > 1) in a spatially homogeneous environment. In a case of

homogeneous environment, we identified an optimal range of temperature for which

dengue epidemic occurs (i.e. R̄0 > 1); dengue can not spread if the temperature is

too cold or too hot. For a case of spatially heterogeneous environment, we provide

theoretical formulations of two threshold indices, mosquito reproduction number

(RM ) and infection invasion threshold (R0). We discuss the case RM < 1 that

presumably corresponds to the global stability of DFE E0 (see Remark 3.1), in which

mosquito population gets eradicated along with dengue. This situation is related to

prevention programs that target to destroy mosquito population. Furthermore, we

prove that RM > 1 and R0 < 1 provide the global stability of DFE E1, in which

dengue is eradicated in the presence of mosquito population. In this case, we also

prove that the disease persists for R0 > 1. The infection invasion threshold R0

includes dengue related prevention strategies along with mosquito controls.

We also performed thorough simulation of the model to study effects of the tem-

perature heterogeneity and human-vector mobility on disease outcomes, including

prevalence, new infections and the epidemic size (the total infection during an epi-

demic). We find that both temperature heterogeneity and human-vector mobility

play important role in spatial spread of dengue. While the mobility (human or
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vector) significantly affects the spread of disease, whether the vector moves faster

or the human moves faster does not seem to play major role in the dengue spread.

Most importantly, our results show that the environmental temperature hetero-

geneity has extremely important role in altering disease outcomes. In particular,

temperature profiles with lower mean cause the spread of dengue towards warmer

places and less heterogenous temperature profiles cause the spread of dengue widely

across space during the epidemic.

While the threshold indices developed and simulation results generated in our

study can be useful to design prevention and control strategies to reduce dengue

spread, we acknowledge some limitations of our study. Because the main focus of

this study is to investigate the effects of spatial heterogeneity of temperature, we

ignored possible change of the temperature over time. Thus, our results are more

relevant to places where the temperature remains approximately constant through

out the epidemic season. To incorporate a temporal change of the temperature, our

model needs to be improved by considering spatial-temporal dependent parameters,

which we plan to pursue in our future work. Our parameters are obtained from the

limited data sets and limited studies. Therefore, there might be some uncertainties

on parameter estimates, particularly those related to human and vector mobility.

Finally, prevention and control strategies need to be incorporated explicitly in the

model to accurately evaluate those strategies.
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