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Abstract
Purpose of Review Human immunodeficiency virus (HIV)
has infected over 36 million individuals worldwide and
presents a tremendous public health concern, yet much
remains unknown about the effect of immune responses
on infection. In this review, we discuss the current sta-
tus of mathematical modeling of HIV-immune system
dynamics and how advances in modeling approaches
have contributed to our understanding of the role of
immune responses in virus infection.
Recent Findings Recent advances provide important
quantitative findings about CD8+ T cell and antibody
responses. Specifically, these models explain important

dynamical features such as the intracellular eclipse
phase, and they estimate immune escape rates, the
timing of MHC downregulation, and the proportion of
virus in antibody-viral complexes.
Summary Models of HIV-immune system dynamics, vali-
dated with experimental data, advance our quantitative
understanding of infection and can generate hypotheses
for further experiments. Greater insight on immune re-
sponses in HIV infection dynamics can lead to the devel-
opment of vaccines and ultimately a cure for this
infection.
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Introduction

The study of virus dynamics using mathematical models
has had a substantial impact on understanding within-host
dynamics of human immunodeficiency virus type 1 (HIV-
1) and other viral infections [1]. This understanding has led
to advances in treatment strategies. However, it is well
known that immune responses can significantly alter viral
dynamics and treatment effectiveness. Despite being an im-
portant component of virus-host interactions and highly rel-
evant for vaccination strategies, the role of immune re-
sponses on HIV infection is yet to be fully illuminated.
Immune response modeling in viral dynamics is one of
the rapidly growing subfields of within-host infection.
Here, we briefly review the current status of modeling
HIV-immune system dynamics, and in particular, how
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contributions over the past 5 years have advanced our
knowledge of the role of immune responses in virus
infection.

Virus Dynamics Models

The standard model of virus infection dynamics considers
three populations: free-virus, uninfected (or target) cells, and
infected cells. Despite its remarkable simplicity, this model
can reasonably explain early viral load data in individuals
infected with HIV. This model, along with some of its vari-
ants, has been reviewed extensively [1–6]. The standard mod-
el does not explicitly take the immune response into consid-
eration. However, evidence from experimental studies have
shown that CD8+ T cell depletion in simian immunodeficien-
cy virus (SIV)-infectedmacaques results in an increase in viral
load [7–10], implying that the immune response has an effect
on the overall viral dynamics not explained by the standard
model. Mathematical modeling also indicates a role for im-
mune control [11, 12].

Additional studies have suggested that CD8+ T cells play a
limited role in HIV control. A vaccine that increases CD8+ T
cells before SIV infection does not change the viral growth or
post-peak decay rate observed during primary infection of
non-immunized SIV-infected macaques [13]. However, spe-
cific cellular and humoral immune responses to HIV are de-
tected throughout clinical infection and are taken into consid-
eration in escape studies. Furthermore, data from other studies
indicate a role for CD8+ T cells, especially in elite controllers
[14–16]. A study in which CD8+ T cells were depleted in
early SIV infection resulted in the viral load persisting at high
levels instead of exhibiting the typical peak and drop in virus
dynamics [10]. Moreover, CD8+ T cell escape mutants begin
accumulating around the time of peak viremia, apparently
emerging in response to inhibition by CD8+ T cells.

The standard model of virus dynamics has been modified
in recent years by a number of researchers to include
immune responses (Fig. 1). Figure 1 shows a schematic dia-
gram of a virus dynamicsmodel with immune responses; most
useful models contain a subset of these elements in an effort to
keep the model and its analysis tractable. Several models con-
tain multiple subsets of infected cells, such as infected non-
virus-producing cells and productively infected cells. Some
models also include multiple populations of viral strains, with
their corresponding infected cells and the effector responses
(cells and antibodies) levied against them. Several of the re-
cent studies on modeling HIV-immune system dynamics fo-
cus on immune escape, or the process of viral evolution to
evade the established immune responses. This review pro-
vides an update on recent progress in the past 5 years specif-
ically on models of HIV virus dynamics that include immune
responses.

Modeling CD8+ T Cell Responses

Thus far, the majority of work on modeling HIV dynamics
with immune responses has focused on CD8+ T cell re-
sponses. In this section, we review recent work that incorpo-
rates the CD8+ response into the standard model of HIV and
related infections.

Intracellular eclipse phase models make for a better fit to
HIV data, improve escape rate estimates, estimate the
timing of MHC downregulation, and resolve the mecha-
nism of CD8+ activity. A number of recent modeling efforts,
each pursued to investigate different questions, subdivided the
infected pool into cells in the intracellular eclipse phase and
productively infected cells.

A recent study by Althaus and de Boer [17], modeling
the eclipse phase and productively infected cells separate-
ly, considers that HIV is able to partially evade killing by
CD8+ T cells through downregulation of MHC-I mole-
cules on infected cells. They estimated that this downreg-
ulation occurs as early as 12 h post infection, suggesting
that cytotoxic T lymphocyte (CTL) killing during the
eclipse phase can be more efficient than at later viral life
stages because the downregulation increases as time pro-
gresses. In a further study by the same authors, an ex-
panded model is presented that considers not only an in-
tracellular delay phase but also multiple infections of cells
[18]. Other CD8+ T cell-based models that expand the
standard model by subdividing the infected pool into cells
in the eclipse phase and productively infected cells also
take into account that most escape events occur early, and
the escape rate slows considerably over time [19].
Investigations by these models concluded that HIV
evolves only a small number of escape mutants when
the CD8+ T cell response is sufficiently broad, and so
escaping one of the many CD8+ T cell responses provides
little advantage to the virus after the viral set point (where
the viral load stabilizes and reaches a steady state) has
been approached. Pawelek et al. alternatively modeled
the eclipse phase by incorporating into the standard model
a time delay for the production of virus after infection
[20]. This model also included the population of effector
cells that kill infected cells as well as a second time delay
for the emergence of killing ability. They found an im-
proved fit of their model to viral load data from 10 pa-
tients during primary HIV-1 infection, although this alter-
ation was not a statistically significant improvement com-
pared to the model without time delays. Using their mod-
el, they found that the time between infection and virion
production was less than 1.5 days, and the time between
infection and the emergence of killing ability was between
19 and 32 days.
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The mechanism of CD8+ T cell activity has been a
topic of active research in the last several years. In par-
ticular, researchers questioned whether CD8+ T cells exert
their influence on virus infection by killing infected cells,
or if their effect is mediated through a secreted soluble
factor that has an inhibitory effect on virus production or
cell infection [16, 21–26]. CD8+ non-cytolytic factors in-
clude the CD8+ cell antiviral factor (CAF) [27, 28],
prothymosin-alpha [29], or other soluble factors secreted
by HIV-specific CD8+ T cells with antiviral activity
[30]. In a counterargument, others contend that modeling

supports the direct killing mechanism of CTLs [31] and
conclude that a CTL killing mechanism describes the viral
load data well when the model includes the eclipse phase
before virus production [32••]. This debate has been
reviewed extensively elsewhere; see Gadhamsetty et al.
[33]. Perhaps future models can delineate the extent of
activity of both mechanisms, or can help elucidate the
precise role and timing of each effect. If nothing else, this
controversy points towards a need for clarification on this
issue regarding CD8+ T cell function, and it can shed
light on which experiments can resolve the discrepancy.

Fig. 1 Schematic diagram showing the modeling of HIV infection
dynamics with adaptive immune responses. Populations include
uninfected cells, infected cells in the intracellular eclipse phase before
the production of virus begins, productively infected cells, free virus,

CD8+ effector cells, and antibodies. The potential effects of CD8+ T
cells and antibodies that have been considered by mathematical models
are depicted
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Other models that include CD8+ Tcell responses delineate
controllers from viral rebounders or establish thresholds
between control and AIDS. In work on the latent reservoir,
Conway and Perelson [34••] focused their study on why
only a small fraction of patients on antiretroviral therapy
exhibit post-treatment control, i.e., viral load maintained
at RNA <50 copies per milliliter after cessation of thera-
py. They hypothesized that antiretroviral therapy, initiated
early during primary infection, permits post-treatment
control by limiting the size of the latent reservoir, which,
if small enough at treatment termination, may allow the
adaptive immune response to prevent viral rebound and
control infection. Using their model, they provided the
range of the CTL killing strength and the latent reservoir
size at treatment cessation for viral rebound, post-
treatment control, or elite controllers. They conclude that
the size of the latent reservoir and killing rate delineate
these outcomes.

In a model by Huang et al. [35] that included a popu-
lation of CTLs in the standard model, they established
thresholds that characterize HIV persistence and the pro-
gression to AIDS. One threshold delineates persistence of
infection, and another allows sufficient CTL killing of
infected cells for the individual to progress to AIDS. In
viral persistence, the CTLs are not stimulated enough to
clear the virus; in AIDS, the CTL activity is so high
that all the CD4+ T cells are killed, resulting in
immunodeficiency.

Recent modeling efforts improve estimates of the timing
and the rate of escape, for single and multiple escape
events. Models that calculate the rate of emergence of
escape variants provide kinetics that give an estimate of
the strength of the immune response and the pressure it
exerts on the virus. The basic model considers popula-
tions of two viral strains, representing the wild-type virus
and a mutant that is capable of escaping the CD8+ T cell
response [1]. This simplified model does not explicitly
include the dynamics of infected cell populations, based
on the quasi steady state assumption that the infected cell
population densities are proportional to the densities of
the respective virus populations throughout infection [1,
36]. A key idea incorporated in this model is that the
escape variant avoids death from CD8+ T cell responses,
since these viral strains are resistant to the CD8+ T cell
response against the wild type. The model solution yields
the frequencies of the wild-type and mutant populations,
from which the escape rate is calculated. The escape rate
increases as the rate of killing of the wild type increases,
and it decreases as the fitness cost of the escape mutation
increases. Therefore, the fastest escapes happen when
CD8+ T cell pressure is high and the fitness cost of escape
is low [37].

Some recent work includes alternate methods to calcu-
late escape rates. Wick and Yang [38••] introduced an
Bescape formula^ based on branching processes to calcu-
late the escape rate that takes into account the relative
escape advantage, fitness loss, mutation rate, and effective
population size of productively infected cells. Using the
two-strain mathematical model and longitudinal data from
three HIV-infected patients, Ganusov et al. quantified the
CD8+ T cell escape rate for single and multiple epitopes
[39]. Their calculations, based on the relative frequencies of
wild-type and mutant virus and the initial frequency of the
mutant, showed that the escape rate decreases over time be-
tween infection and the viral set point. The study suggested
that the low escape rates observed in chronic/late infection are
due to a high fitness cost for escape mutations and an increase
in the diversity of CD8+ Tcell responses with time. In another
study, Ganusov et al. concluded that through mutation, the
virus population escapes from around half of the CD8+ T cell
responses encountered in the first year [36]. However, estimat-
ed escape rates can vary depending on the mathematical mod-
el and method used.

Using a similar two-strain model, Martyushev et al.
investigated patterns of epitope-specific CD8+ T cell es-
cape in 25 SIV-infected macaques in which multiple es-
cape mutants emerge simultaneously [40•]. It was ob-
served that immune escape occurs on average 18 days
after the epitope-specific CD8+ T cells reach 0.5 % of
total CD8+ T cells. Upon escape, two patterns emerge:
monomorphic and variable escape. They concluded that
the timing of escape is largely determined by the kinetics
of epitope-specific CD8+ T cells and is independent of the
variability of the epitope. Applying an approach that con-
siders the entire HIV genotype rather than single-escape
epitopes that are treated independently, Kessinger et al.
used sequential data from three HIV-infected patients to
calculate escape rates [41•]. They predicted escape rates
that were substantially higher than previously estimated
rates: 0.3–0.4 escapes per day for the first 4–6 escape
mutations. Furthermore, they showed that the timing of
escape events depends on epitope entropy and
immunodominance. Leviyang and Ganusov [42•] posit that
current methods of estimating CD8+ T cell escape rates
that assume independent escapes can be biased when es-
cape proceeds from multiple CTL responses concurrently.
They also contend that other models considering escape
across multiple epitopes [36, 41•, 42•] are computationally
complex and highly parameterized. To overcome these dif-
ficulties, they proposed an alternate method that applies
multi-epitope logistic models to HIV patient data.
Implementing their method, they estimated that concurrent
escape at multiple epitopes occurs at rates of 0.03 to 0.4
escapes per day, in line with the 0.1 to 0.2 escapes per
day observed in patient data.
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Several recent studies investigate the triggers, characteris-
tics, and mechanisms of escape. In this area, modeling has
contributed to our understanding of conditions that permit
virus persistence, clearance, control, and escape. Liu et al.
investigated early immune escape in primary infection,
expanding on previous models of CD8+ T cell responses
at a single epitope [43]. They showed that CD8+ T cells
exert selective pressure that favors rapid escape, so an
increase in the magnitude of T cell responses significantly
increases the risk of escape. However, slow escape does
not indicate inadequate immune pressure, as increased
epitope entropy was also associated with faster escape.
Entropy, however, was not a good predictor of resulting
virus fitness. Surprisingly, they found that rapid virus es-
cape was not more common in epitopes restricted by pro-
tective HLA allotypes. In an effort to understand the im-
pact of CTL escape on immunopathology, Johnson et al.
developed a mathematical model to explore the conditions
under which CD8+ T cells lead to protection from infec-
tion or immunopathology [44]. Their investigation
showed that production of escape mutants has an insignif-
icant effect on pathology, even though escape can change
the dynamics of the infection. By developing an innova-
tive Bescape clock^ approach that measures the replace-
ment of wild-type virus by CTL escape mutant strains,
Reece et al. [45] estimated the turnover of viral DNA in
SIV-infected macaques. They concluded that treatment
should be given early or during active virus replication,
to reduce the formation of stable viral DNA in the host.
Konrad et al. constructed a two-strain model in which
therapeutic vaccines that stimulate the CTL response
can, under certain conditions, theoretically eliminate both
wild-type and mutant strains. They also evaluated the con-
ditions for escape mutants to emerge, resulting in vaccine
failure. Within their framework, they were able to demon-
strate how imperfect adherence to the vaccine regimen
may result in persistence of a mutant strain at low levels,
allowing the mutant to outcompete and escape [46].

Computational simulations explore the conditions and
consequences of CTL escape. A number of studies explored
escape via constructing computational simulations. Kadolsky
and Asquith quantified the impact of CD8+ T cell escape on
viral load in chronic HIV infection [47]. Their study found that
CTLs result in a modest increase in viral load. They also noted
a significant positive association between viral load and es-
cape events involvingmutations in the pol gene and a negative
association with the gag gene. A stochastic agent-based model
of CTL escape developed by Schwartz et al. examines the
conditions under which escape mutants occur in both acute
and chronic HIVinfections [48]. Their simulations reproduced
CTL escape seen in clinical data, namely, early escape, late
escape, and the rapid escape events occurring in late

infection. Similarly, using computational simulations,
Gadhamsetty et al. observed that CTL killing efficiency is
determined by the relative densities of target cells and CTLs,
which depend on if a CTL can kill multiple cells concurrently
and if a target cell can be killed by multiple CTLs together
[49]. Simulations of HIVand CD8+ T cell immune responses
are also performed by Castiglione and Celeda, using the im-
mune system computational simulation model called C-
IMMSIM [50].

Modeling Antibody Responses

Recently, more clinical and experimental data have become
available for the study of antibodies in HIV infection,
expanding the potential of modeling to understand the mech-
anisms by which antibodies aid in control of infection.Models
have investigated the roles of both neutralizing and non-
neutralizing antibodies in HIV and related infections.

Modeling studies predict how neutralizing antibodies may
determine virus control or persistence. A study by a com-
bined group of experimentalists and modelers showed that the
composition of virus-antibody immune complexes is dynamic
over the course of HIV-1 infection [51]. Their study deter-
mined the relative concentration of immune complexes during
acute and chronic infection and found significantly fewer
HIV-antibody immune complexes in acute infections than in
chronic infections. Additionally, they estimated that the mean
number of neutralizing antibodies bound to each virion in
acute infections is approximately one antibody per virion. A
theoretical study investigating strain-specific and cross-
reactive (or poly-specific) HIV antibodies compared the effi-
cacy of antibodies that can bind multiple strains of virus to
those that only bind one strain [52]. Results of this model
indicate that when only poly-specific antibodies are present,
they are capable of controlling multiple strains and can lead to
viral clearance. However, a mixed antibody response is dom-
inated by strain-specific antibodies and results in viral persis-
tence. Another study by Ciupe [53] examined the neutralizing
capability of antibodies and their impact on persistent infec-
tion. By modeling antibody-binding kinetics, Ciupe showed
that in the early stages of infection, HIV virions are largely
free, with very few forming antibody-virion complexes, while
at the 1-year mark, only about 1 % of the virus remains free,
with the remaining proportion in the form of antibody-virion
complexes, thereby drastically reducing the infectious virus
pool. This reduction in infectivity over time is consistent with
the previous SIV infection model with time-decaying
infectivity that fits the SIV viral load better than the standard
model [54]. In another study, Wikramaratna et al. combined
CD8+ T cells with antibody responses (both specific and
cross-reactive) to explore how virus control breaks
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down, leading to AIDS [55••]. Their novel model takes into
account CD8+ T cell escape as well as that specific antibody
populations are long-lived, while CD8+ Tcell activity is short-
lived. Intriguingly, their results posit that CD8+ T cell escape,
as well as the loss of virus control, can be prevented by strong
antibody responses.

Models estimate antibody escape rates. Studies showing
antibody escape events in HIV-infected individuals have per-
mitted the beginning of estimation of calculations of antibody
escape rates. These studies show that low titers of broadly
neutralizing antibodies appear to select for escape mutants
due to a relatively low concentration of the antibody capable
of neutralizing a variety of sub-strains [56]. This supports an
early need for a high titer of broadly neutralizing antibodies to
control infection.

Experimental infection of horses with equine infectious
anemia virus (EIAV), a lentivirus similar to HIV, evi-
denced a single antibody escape variant that arose several
weeks after infusion of SCID horses with EIAV-specific
antibodies [57, 58]. Using these data from EIAV-infected
horses to study antibody escape, Schwartz et al. devel-
oped an improved mathematical model to quantify the
antibody escape kinetics of EIAV [59•]. This study pro-
vided the rates of viral escape due to antibody pressure for
two different antibody dosages and two different antibody
specificities. In addition, they calculated antibody
blocking rates of wild-type virus, fitness costs of mutant
virus, and growth rates of both viruses. By determining
how rapidly the virus escaped from the antibody response,
this study estimated the strength of antibody pressure in
these EIAV infections. Similarly, Ciupe and Schwartz
examined antibody protection and escape in EIAV infec-
tion, including an analysis of the role of antibody

neutralization on competition and escape in the presence
of two viral strains [60]. Expanding on this analysis,
Schwartz and Smith? [61] modeled these data from EIAV-
infected immunodeficient horses presuming three viral strains
and identified the correlates of antibody escape and protection.
In a study on cell-to-cell transmission with antibody re-
sponses, Allen and Schwartz [62] developed models to eval-
uate the role of the transmission mode within a single host
(i.e., cell-to-cell vs. free-virus transmission) on EIAV infection
and predict the potential impact of interventions that block
only one mode of transmission. In a more general ap-
proach, Schwartz et al. constructed a model that contains
both antibodies and CTLs in order to project the long-
term behaviors observed in EIAV infection [63].

Models predict the roles for antibodies in vaccine strate-
gies.One of the major hurdles in the development of an effec-
tive vaccine for HIV is the capacity of a vaccine to produce
broadly neutralizing antibodies. A study by Luo and Perelson
[64] suggests that current vaccine studies do not utilize a broad
range of viral subtypes in their vaccine design, and thus do not
elicit broadly neutralizing antibodies as quickly as a more
diverse vaccine could. A more diverse vaccine could help
counteract the virus-antibody coevolution that occurs in the
early stages of infection. This study also explains that broadly
neutralizing antibodies arise late in infection partly due to
competition in the earlier stages of infection. In contrast, an
in silico computational model [65] suggested that generating
cross-reactive HIVantibodies is uncommon because the affin-
ity maturation process gets Bfrustrated^ by different variants
of the virus. These results predict that, for a vaccine to produce
a cross-reactive immune response, one should immunize with
antigenic variants sequentially instead of delivering several
different antigens at once.

Table 1 Other recent reviews on
models of within-host virus
dynamics

Topic Reference

Virus dynamics—overview

Modeling the within-host dynamics of HIV infection [1]

Models of viral population dynamics [4]

Population modeling and evolutionary modeling [2]

T cell turnover

Quantifying T cell turnover [67]

CD8+ T cell responses

Modeling T cell responses to antigenic challenge [6]

Modeling rates of HIV escape from single and multiple CTL responses [36]

Efficiency of CD8+ T cells [68]

Killing rates during HIV-1 infection [33]

Antibody repertoire dynamics

Modeling antibody repertoire dynamics [69]
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More generally, Ali Tabei et al. [66] investigated the mini-
mum threshold of broadly neutralizing antibody needed to ef-
fectively decrease viral load. Using the standard model expand-
ed to include broadly neutralizing antibodies and virion-
antibody complexes, they showed that the antibody response
needed to control infection can be achieved through the immune
response and is therefore feasible by therapeutic vaccination.
Future modeling efforts will likely continue to contribute to
understanding of how antibodies can help control HIVinfection.

Conclusion

Besides improving our grasp of viral infection mechanisms,
mathematical models can also generate new hypotheses that
can be evaluated experimentally. Future modeling studies
should continue to investigate the mechanisms of CD8+ Tcell
and antibody activity on HIV. Whether CD8+ T cells exert
their effects predominantly through killing infected cells, se-
creting soluble factors, or both (perhaps to different extents at
different stages) needs additional clarification through both
experimental and mathematical studies.

Continued efforts are also essential to construct mathematical
models that can help us understand antibody activity against HIV.
The mechanisms through which antibodies (neutralizing and
non-neutralizing) help control HIV infection are largely un-
known. In this respect, additional clarity is needed on clearing
virus, blocking infection of cells, or involvement in other mech-
anisms. Models may be useful to investigate whether antibodies
clear infection by direct binding to virus, or if their effects are
mediated by indirect mechanisms such as ADCC (antibody de-
pendent cell cytotoxicity), ADCVI (antibody dependent cell-
mediated virus inhibition), or tagging infected cells for destruc-
tion by phagocytes. The timing (i.e., during which phases of
infection) and degree of these responses will advance our under-
standing of virus control by antibodies. Ultimately, a successful
vaccine will elicit broadly neutralizing antibodies as the virus
evolves in response to antibody (and presumably other immune)
pressure, and modeling studies can provide insight into this
effort.

Furthermore, the kinetics of effective immune responses in
HIV infection are still largely unknown. Control strategies will
benefit from knowledge of which responses are active in dif-
ferent stages of infection, as well as to what extent. Additional
areas of future investigation include the role of innate immune
responses in HIV infection and the role that immune responses
exert against cell-to-cell infection. Most importantly, models
should investigate how immune responses can be harnessed to
develop effective vaccine strategies. Future models should
consider both CD8+ T cell and antibody-stimulating strate-
gies, so that vaccines can be developed with improved effica-
cy from both responses working together.

For further reading, we refer the reader to the many in-
depth reviews written on other aspects of within-host viral
dynamics modeling that are beyond the scope of the current
review and not covered here (Table 1).
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