
Bull Math Biol
DOI 10.1007/s11538-012-9775-4

O R I G I NA L A RT I C L E

The Time Distribution of Sulfadoxine-Pyrimethamine
Protection from Malaria

Samira Akbari · Naveen K. Vaidya · Lindi M. Wahl

Received: 30 January 2012 / Accepted: 20 September 2012
© Society for Mathematical Biology 2012

Abstract Sulfadoxine-pyrimethamine (SP) has been one of the most widely used
antimalarial treatments world-wide, and is also used prophylactically in vulnerable
populations. In this paper, we develop a mathematical model which allows us to in-
fer the time distribution of SP protection from drug-trial data. Fitting our model to
data from a controlled field study in Mali, we find that SP provided protection from
malaria for an average of 37.9 days in this pediatric population. We demonstrate that
the duration of SP protection is not well described by an exponential distribution, and
in fact has a much narrower dispersal about the mean; the best-fit standard deviation
predicted by our model was only 17.0 days, as opposed to 41.8 days for the expo-
nential model. We estimate the monthly entomological inoculation rate and the basic
reproductive number for malaria in this population, and demonstrate that extremely
high SP treatment rates would be necessary to maintain an effective reproductive
number below one throughout a single rainy season. These results have implications
for further efforts to model the impact of SP treatment, or for investigations of the
optimal timing of prophylactic SP.

Keywords Mathematical model · Malaria · Sulfadoxine-pyrimethamine · Vaccine
trial · Prophylaxis

1 Introduction

Malaria is the fifth leading cause of death from infectious disease worldwide (Centers
for Disease Control and Prevention 2010); in Africa, it is second only to HIV. The
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disease kills about 1 million people a year, 89 % of whom are in Africa (Centers for
Disease Control and Prevention 2010). Malaria is spread through contact with infec-
tious mosquitoes; after an infectious mosquito bite, malaria parasites multiply in the
human liver and blood-stream, and are then able to spread to susceptible mosquitoes
through further mosquito bites. Common symptoms of malaria are headache, fever
and vomiting; untreated infections progress and can become life-threatening, partic-
ularly in children (Dicko et al. 2011).

Due to increasing parasite drug-resistance and mosquito insecticide-resistance,
malaria poses one of the biggest burdens for global health management (Barnes et al.
2006; Chitnis et al. 2006; Koella and Antia 2003; ter Kuile et al. 2007). Therefore,
it is critically important to understand the dynamics of disease transmission, and in
particular to understand the impacts of drug therapy on these dynamic processes.

For decades, chloroquine was the most common treatment for malaria, but chloro-
quine resistance has increased to such an extent that it has become ineffective in
almost all malaria-endemic countries (Barnes et al. 2006). As an alternative, a fixed-
dose combination of sulfadoxine and pyrimethamine was widely implemented, and
became one of the most widely used antimalarial treatments in the world (Barnes et al.
2006). Sulfadoxine-pyrimethamine (SP) is very effective (99 % efficacy in treating
uncomplicated malaria) and has the advantage that the entire treatment can be given
as a single dose (Coulibaly et al. 2002). Once an infected person receives SP treat-
ment, recovery is typically rapid and protection against reinfection is maintained for
several weeks (Coulibaly et al. 2002).

While the use of SP monotherapy is now strongly discouraged due to the de-
velopment of drug-resistance, SP still continues to be available as monotherapy in
many countries, and it is used as one of the primary antimalarial agents in preven-
tive treatment (Coulibaly et al. 2002; World Health Organization 2010). The World
Health Organization currently recommends artiminisin-based combination therapies
(including artesunate plus SP) as the first line of treatment against uncomplicated
P. falciparum malaria. The use of SP alone, however, is still recommended for the
preventive treatment of malaria in infants (World Health Organization 2010), admin-
istered at the time of routine vaccines during the first year of life in some endemic
areas, regardless of the presence of symptoms or infection (Egan et al. 2005). In-
termittent preventative doses of SP are also recommended for pregnant women in
almost all malaria-endemic countries in Africa; SP is the only antimalarial drug used
in this way (ter Kuile et al. 2007). In addition, due to the high success rate of SP
as an antimalarial therapy, prophylactic SP has also been considered in many drug
trials (Coulibaly et al. 2002; World Health Organization 2010). Although SP-based
treatment and prevention strategies have been widely accepted, much uncertainty re-
mains regarding SP efficacy and the duration of SP protection (Dicko et al. 2011;
Coulibaly et al. 2002).

A detailed understanding of the influence of SP on malaria transmission and dy-
namics is critical. In the sections which follow, we develop a mathematical model
which allows us to estimate the duration of SP protection from drug-trial survey data.
We use our approach to determine the distribution of SP protection in a pediatric
population after a single prophylactic dose, using data from a study of the effects of
SP in children and teenagers in Bandiagara, Mali (Coulibaly et al. 2002). Using our
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model, we also estimate the entomological inoculation rate and the reproductive num-
bers for Bandiagara, Mali, where SP is the approved second-line antimalarial agent
(Coulibaly et al. 2002). An important feature of this work is the development of a
modeling approach for prophylactic drug-trial data, in which comparatively small
treatment and control groups are coupled to a larger, but unsurveyed, population in
an endemic area.

2 Methods

2.1 Population-Wide Malaria Model

The dynamics of standard epidemiological models for malaria are well known (An-
derson and May 1991; Dietz et al. 1974; Koella and Antia 2003; Macdonald 1957),
and are described by the following system:

dSh

dt
= λhNh + βhRh − μhSh − (αmhbmIm)Sh

Nh

,

dIh

dt
= (αmhbmIm)Sh

Nh

− (μh + αh + μd)Ih,

dRh

dt
= αhIh − (μh + βh)Rh,

(1)

and

dSm

dt
= λmNm − μmSm − (αhmbmIh)Sm

Nh

,

dEm

dt
= (αhmbmIh)Sm

Nh

− (γm + μm)Em,

dIm

dt
= γmEm − μmIm.

(2)

Here Sh denotes the number of susceptible humans, Ih, infectious humans, and
Rh, recovered humans, while Sm, Em, and Im denote susceptible, exposed and infec-
tious mosquitoes, respectively. The parameters λh and μh are the human birth rate
and natural death rate, while λm and μm are the mosquito birth rate and death rate,
respectively. The parameter αh is the recovery rate for humans, βh is the rate of loss
of immunity for recovered humans, and μd is disease-induced death rate for humans.
We use γm to denote the rate of progression of exposed mosquitoes to the infec-
tious class. Finally, αmh denotes the infection probability, per bite, from an infectious
mosquito to a susceptible human, and αhm denotes the infection probability, per bite,
from an infectious human to a susceptible mosquito. The total number of mosquito
bites per mosquito per day is represented by bm.

The simple SIR model described above obscures several of the complicating fea-
tures of malaria infection in humans. Infected humans may be symptomatic or asymp-
tomatic, and asymptomatic infections may or may not be detectable in diagnostic
tests, depending on the parasite concentration in the blood. Thus, new episodes of
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malaria disease, as measured in the study groups described in the following sub-
section, are not equivalent to new infections. More complex malaria models in-
clude asymptomatic carriers (Chitnis et al. 2006; Wyse et al. 2007; Ducrot et al.
2009), as well as other refinements such as spatial heterogeneity (Smith et al. 2005b;
Auger et al. 2008; Arino et al. 2012), incubation delays (Ruan et al. 2008), seasonality
(Griffin et al. 2010; Lou and Zhao 2010), or parasite life-history (Griffin et al. 2010;
Chitnis et al. 2008, 2012). With the goal of fitting our model to survey data, however,
we aim to minimize the number of unknown parameters. We thus use the simple SIR
system for humans in the population-wide model. In the supplementary material, we
also examine the effects of including an exposed compartment in the human popula-
tion.

We let Nh = Sh +Ih +Rh be the total number of humans and Nm = Sm +Em +Im

be the total number of mosquitoes. To simplify the model, we express systems (1)
and (2) in transformed variables sh = Sh

Nh
, ih = Ih

Nh
, rh = Rh

Nh
, sm = Sm

Nm
, em = Em

Nm
,

and im = Im

Nm
. This allows the standard simplification rh = 1 − sh − ih and sm =

1 − em − im, reducing the population-wide malaria model to:

dsh

dt
= βh(1 − sh − ih) + λh(1 − sh) + μdihsh − βmhimsh,

dih

dt
= βmhimsh − (λh + αh + μd)ih + μdi2

h,

dem

dt
= βhmih(1 − em − im) − (γm + λm)em,

dim

dt
= γmem − λmim

(3)

where βhm = αhmbm and βmh = αmhbmNm/Nh.
We note that under this transformation, the system is nonautonomous, since βmh

depends on the mosquito population density per human, Nm(t)/Nh(t). However, in
Sect. 2.4, we demonstrate that this ratio is very close to constant in the dataset under
consideration, and thus βmh is effectively a constant. We therefore impose the simpli-
fying assumption that βmh is time-independent, and study the resulting autonomous
system in the sections to follow.

2.2 Study-Group Malaria Model

We next develop a modeling approach to describe the data collected in a clinical study
in Bandiagara, Mali. Coulibaly et al. (2002) studied 202 subjects, aged 3 months to
20 years, who received a single prophylactic dose of SP, as well as an untreated
control group of 199 subjects of similar ages. Consistent with Coulibaly et al., we
model two study groups—SP-treated and control—in addition to the overall popula-
tion in the town. The population-wide malaria model described above, with variables
sh, ih, em, and im, describes the transmission dynamics and prevalence of malaria
among humans who live in the study area, but are not part of the (comparatively
small) SP study groups. However, the population-wide disease dynamics determine
disease prevalence in the mosquito population. This common population of infectious
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Fig. 1 Schematic diagram of the full model. Here, Bmh = αmhbm/Nh and Bhm = αhmbm/Nh

mosquitoes, in turn, drives the infection dynamics in the study groups. We assume
that the study groups are sufficiently small that individuals in these groups have no
effect on the population-wide disease dynamics. Figure 1 provides a schematic il-
lustrating the population-wide and study group models, described in greater detail
below.

For SP-treated individuals (subscripted t), we assume that the dose of SP received
at the beginning of the study confers protection from infection for some unknown
time interval. We assume that individuals who are initially in this SP-protected group
eventually become susceptible to infection. Let Pt denote the number of individuals
in the SP-treated group who are protected by SP, while St denotes treated individuals
who have become susceptible. In the simplest model, we assume that treated individ-
uals who begin in the Pt class progress to the St class at a constant rate κ , yielding
an exponential distribution for the duration of SP protection, with mean 1/κ . We
then relax this assumption by allowing the duration of SP protection to be gamma-
distributed, finding the parameters of this gamma distribution which best fit the data
(see the following section).
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For individuals in the study groups, as soon as a malaria infection was detected in
the clinical study, the infected individual was immediately treated and is no longer
part of the susceptible class. Since we are only interested in the timing of first infec-
tion in the study groups, there is no infectious class in these groups; upon infection,
individuals move directly from the St group to the “removed” class, denoted Rt .
Thus, we use “removed” in a nonstandard sense, to indicate any individuals who are
no longer candidates for a first infection. Similarly, for untreated individuals in the
control study group (subscript u), we use two compartments, Su and Ru, denoting
the number of susceptible individuals and removed individuals, respectively. As in
the population-wide model, we scale study group populations by their corresponding
total populations to obtain scaled variables su, ru, pt , st , and rt . Note that although
we include natural mortality in the population-wide model, we neglect it in the study
group models because there were no deaths in either study group during the study.

The population-wide and study-group models are linked by a common population
of infected mosquitoes. Combining the models, we arrive at the following system:

dsh

dt
= λh(1 − sh) + βh(1 − sh − ih) + μdihsh − βmhimsh,

dih

dt
= βmhimsh − (λh + αh + μd)ih + μdi2

h,

dem

dt
= βhmih(1 − em − im) − (γm + λm)em,

dim

dt
= γmem − λmim,

dsu

dt
= −βmhimsu,

dru

dt
= βmhimsu,

dpt

dt
= −κpt ,

dst

dt
= κpt − βmhimst ,

drt

dt
= βmhimst .

(4)

Note that ru and rt , although included in the system (4) for clarity, are decoupled,
and the full system has seven coupled equations.

2.3 Duration of Drug Protection

We are interested in the duration of protection conferred by SP. A limitation of sys-
tem (4) is the assumption that this duration is exponentially distributed, that is, pro-
tection is lost at a constant rate κ . We relax this assumption by using a linear chain
approximation, a chain of n linear compartments, allowing the duration of protection
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to be gamma-distributed. In practice, we replace the equations for drug-protected and
susceptible individuals in the treatment group in system (4) with the following:

dpt1

dt
= −κpt1,

dpti

dt
= κpt(i−1) − κpti , i = 2, . . . , n,

dst

dt
= κptn − βmhimst .

(5)

We note that the linear chain approximation has the same number of known and
unknown parameters as system (4), and clearly system (4) is recovered by the linear
chain approximation when n = 1. Using this approximation, the mean duration of
SP protection is n/κ , and the duration of protection is gamma-distributed with shape
parameter n.

2.4 Parameter Values and Initial Conditions

Following Aguas et al. (2008), we set the rate of immunity loss to 0.0029 per day and
the human recovery rate to 0.038 per day. This recovery rate corresponds to an av-
erage infectious period of 26 days; we note that longer infectious periods, associated
with asymptomatic infections, have also been reported (Smith et al. 2005a, 2007). To
estimate the disease-induced death rate, μd , we note that a 2-year study of malaria
in Bandiagara (Lyke et al. 2004), followed the entire population of children under
the age of six (i.e., 2,284 children aged ≤ 6 in Bandiagara); of these, 104 developed
severe malaria and 5 died. This gives an estimated mortality, for those infected, of
5 %, yielding μd ≈ 0.05αh. This is an upper bound considering that mortality for
those under 6 years is presumably higher than mortality for those under 20 years. At
this rate of mortality, the total population size Nh is nearly constant over the 168 day
study period, as shown in Fig. 4; thus our assumption that βmh is constant holds.

A recent model of the Bandiagara study (Dembele et al. 2010) estimated the vi-
tal dynamics for both human and mosquito populations in this village during the
study period, finding that both were approximately constant. Following Dembele
et al. (2010), we therefore take λh = μh = 10−4 day−1. The lifetime of a mosquito is
approximately one month (Centers for Disease Control and Prevention 2012) and as-
suming demographic equilibrium we therefore take λm = μm = 0.033 day−1. The la-
tent period for malaria infection in mosquitoes is approximately 10 days (Beier 1998;
Chitnis et al. 2006; Koella and Antia 2003), yielding γm = 0.1 day−1. Values of these
known parameters are provided for reference in Table 1.

Coulibaly et al. (2002) report that at the beginning of the study, Plasmodium fal-
ciparum was detected in the blood samples of 17.1 % of control subjects. These
individuals are not candidates for a first malaria episode of the season, as tracked by
Coulibaly et al., and thus the initial fraction of susceptible humans in the untreated
group, su(0), is 1 − 0.171 = 0.829.

Similar to the control group, 17.8 % of individuals in the SP-treated group were
not candidates for a first malaria episode due to a preexisting infection. We thus take
pt (0), the initial fraction of the treatment group who are protected by SP and will
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Table 1 Parameter values from the literature

Parameter Description Value (per day) Source

λh,μh human birth/death rate 10−4 Dembele et al. (2010)

λm,μm mosquito birth/death rate 0.033 Centers for Disease Control and
Prevention (2012)

αh human recovery rate 0.038 Aguas et al. (2008)

βh human loss of immunity rate 2.9 × 10−3 Aguas et al. (2008)

μd disease-induced death rate 1.9 × 10−3 Lyke et al. (2004), see text

γm rate of progression, em to im 0.1 Beier (1998), Chitnis et al. (2006),
Koella and Antia (2003)

later become susceptible to first infection, to be 1 − 0.178 = 0.822. The fraction
of the SP-treated group that is susceptible to infection, st , is initially zero since all
treated individuals are either protected or are already infected at the beginning of the
study.

Assuming that initial conditions in the control group are representative of initial
conditions in the population at large, we set sh(0), the initial proportion of susceptible
humans, to be 1 − 0.171 = 0.829. The remaining parameters βhm, βmh, κ , and n and
initial values ih(0), em(0), and im(0) are estimated by fitting our model to the data
obtained by Coulibaly et al. (2002). Although we allowed ih(0) and em(0) to be free
parameters in this data fitting, preliminary results allowed us to fix these values, as
described in detail in Sect. 3.

2.5 Data and Model Fitting

In the field survey study (Coulibaly et al. 2002), the two study groups were moni-
tored during the malaria season and the timing of the first malaria episode for each
individual was recorded. This dataset thus provides the cumulative number of new
infections, which occurred in each study group up to a given day. From our model,
we can likewise estimate U(t) and T (t), the total number of new infections which
have occurred up to time t in the control and SP-treated groups, respectively:

U(t) =
∫ t

0
βmh im(s) su(s) ds = ru(t) − ru(0),

T (t) =
∫ t

0
βmh im(s) st (s) ds = rt (t) − rt (0).

(6)

Table 2 summarizes the unknown parameters and initial conditions of the full
model. To estimate these unknowns, we first take n = 1 (system 4), and simultane-
ously integrate system (4) and system (6) numerically (fourth-order Runge–Kutta).
We then evaluate U(t) and T (t), as predicted by the model, at the times reported in
the clinical data set, that is, at 28, 56, 84, 112, 140, and 168 days. We compare the
model predictions to the clinical data and use constrained nonlinear optimization (in
particular, a gradient descent algorithm) to find values of the unknown parameters and
initial conditions which best describe the clinical data. We then compute the Akaike
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Table 2 Initial conditions and estimated (best-fit) parameters

Parameter Description Value

im(0) initial fraction of infected mosquitoes 0.0346

βhm = αhmbm infection rate, human to mosquito 0.0221 d−1

βmh = αmhbm
Nm
Nh

infection rate, mosquito to human 0.453 d−1

κ rate of loss of drug protection 0.132 d−1

n shape parameter for time distribution of drug protection 5

information criterion (AICc) to assess the relative goodness-of-fit, where lower AICc

values indicate a significantly better fit.
We repeat this procedure for integer values of n up to 15, using AICc values for

model comparison.

3 Results

3.1 Initial Infectious Fraction, Population-Wide

As described previously, we allowed the initial fraction of infected humans, ih(0),
to vary as a free parameter. However, results of data fitting for system (4) (n = 1)
indicated that the model most closely matched the data when ih(0) ≈ 0, and includ-
ing ih(0) as an additional free parameter caused the AICc value to increase. Even for
more complex models (n = 2, . . . ,15), the best fit value for ih(0) was consistently
negligible, and the AICc was larger when ih(0) was taken as a free parameter, irre-
spective of the number of compartments in the linear chain, or the initial estimates
for unknown parameters. Since this result was robust, we chose to set ih(0) = 0. We
address the possible explanations for this preliminary result in the discussion. Similar
results were obtained for the initial fraction of exposed mosquitoes, em(0). Allowing
this parameter to vary improved model fit slightly (e.g., at n = 5, SSE = 6.80 versus
6.84 when em(0) was fixed to zero), but substantially increased the AICc (13.2 ver-
sus 6.97). We thus set em(0) = 0 and restricted our attention to the resulting model,
which retains five free parameters (Table 2).

3.2 Exponential Model (n = 1)

Our results for this 5-parameter model are succinctly demonstrated in Figs. 2, 3,
and 4. First, the top panel of Fig. 2 shows the results of data-fitting to systems (4)
and (6), with exponentially-distributed drug protection. The model predicts that the
mean duration of SP protection, κ−1 is 41.8 days with a standard deviation of
41.8 days.

We varied the shape parameter in the gamma distribution by taking the number
of drug-protected classes n = 1,2,3, . . . ,15. Figure 3 plots the AICc values thus ob-
tained. We find that the clinical data are best described when we approximate the time
distribution of SP protection by five linear compartments, although six compartments
also provide an excellent fit to the experimental data.
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Fig. 2 Results of data-fitting.
The cumulative number of new
infections which occurred in the
experimental study are plotted
for the control group (circles)
and for the SP-treated group
(squares). The best-fit model
predictions for U(t) (dashed)
and T (t) (solid) are shown for
comparison. The top panel
shows the best fit obtained for
the exponential model (n = 1);
the lower panel shows the same
for the gamma-distributed
model (n = 5). The fit in the
latter case is significantly better,
as measured by the Akaike
information criterion

Fig. 3 Akaike information
criteria (AICc , see text for
details) versus number of delay
compartments, n
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Fig. 4 Population dynamics for the best-fit model (n = 5). In the top panel, the time course of suscep-
tible humans (dashed), infected humans (solid) and infected mosquitoes (grey) are illustrated. The total
population size of humans, Nh(t)/Nh(0) is also shown for comparison (dot-dashed); note that it is nearly
constant over the course of the study. The lower panel shows the time course of susceptible humans in the
untreated study group (dashed) and in the treatment group (solid)

The model fit when n = 5 is illustrated for comparison with the exponential case
in the lower panel of Fig. 2. The values of the best fit parameters are im(0) = 0.0346,
κ = 0.132, βmh = 0.4529, βhm = 0.0221.

In Fig. 4, we illustrate the population dynamics predicted for the population-wide
model, using the best-fit parameter values described above.

The time distribution of SP protection was thus best described by a gamma dis-
tribution with mean 5/κ = 37.9 days, and standard deviation 17.0 days. Figure 5
illustrates this distribution, along with the best-fit exponential distribution from sys-
tem (4) for comparison. Consistent with the results of the Akaike test, we see that the
best-fit distribution of SP protection differs markedly from the distribution predicted
by the best-fit exponential model.

3.3 Entomological Inoculation Rate

The entomological inoculation rate (EIR)—defined as the average number of infec-
tious bites received by a person per unit time—is one of the most commonly mea-
sured indices of malaria prevalence (Smith et al. 2005a, 2007; Shaukat et al. 2010;
Kelly-Hope and Mckenzie 2009). The EIR estimates the level of exposure to parasite-
infected mosquitoes, and is the preferred method for assessing malaria endemicity
and transmission intensity, as well as for evaluating malaria control strategies that
reduce human-mosquito contact (Drakeley et al. 2003; Burkot and Graves 1995;
Shaukat et al. 2010).
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Fig. 5 The distribution of the
duration SP protection for the
best-fit exponential model
(n = 1, dashed), and for the
best-fit gamma model (n = 5,
solid)

In our model, bm and Nm represent the number of bites per mosquito per day
and the total number of mosquitoes, respectively. Therefore, the total bites by all
mosquitoes per day is given by bmNm. Since the fraction of infectious mosquitoes is
Im/Nm, the total infectious bites is bmIm, which are received by Nh humans. There-
fore, the daily EIR is given by

EIR = bmIm

Nh

= βmh

αmh

im.

Previous studies have used 0.05 (Smith et al. 2010), 0.02 (Chitnis et al. 2006), and 0.4
(Dembele et al. 2010) for the value of αmh, the infection probability from mosquito to
human per bite. Taking the average of these values, we get αmh = 0.15. Then, using
our best fit values for βmh and im(0), we compute the monthly EIR in Bandiagara,
Mali to be 3.1. This value is consistent with that for Sudan Savana, Mali (monthly
EIR = 2.8) estimated from a survey study (Sogoba et al. 2007).

3.4 Reproductive Number

The basic reproductive number, R0, is the average number of secondary infections
that one infectious individual would cause over the duration of the infectious pe-
riod, provided that everyone else is susceptible (Chitnis et al. 2006; Diekmann et al.
1990). As discussed earlier, in the context of Bandiagara, Mali, βmh remains effec-
tively constant making the model system (3) autonomous. Therefore, we can calcu-
late R0 for the population-wide malaria model using the next generation operator
approach (Diekmann et al. 1990; van den Driessche and Watmough 2002) for the
scaled system (3). The model system (3) has exactly one disease-free equilibrium
E0 = (1,0,0,0), and equations for the exposed and infectious compartments of the
linearized system at E0 take the form:

dih

dt
= −(λh + αh + μd)ih + βmhim, (7)

dem

dt
= βhmih − (γm + λm)em, (8)
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dim

dt
= γmem − λmim. (9)

We introduce the following matrices:

F =
⎛
⎝ 0 0 βmh

βhm 0 0
0 0 0

⎞
⎠ , V =

⎛
⎝λh + αh + μd 0 0

0 λm + γm 0
0 −γm λm

⎞
⎠ .

These expressions give

FV −1 =
⎛
⎜⎝

0 βmhγm

λm(λm+γm)
βmh

λm

βhm

λh+αh+μd
0 0

0 0 0

⎞
⎟⎠ .

Then R0 corresponds to the spectral radius of FV −1:

R0 = ρ
(
FV −1) =

√
βhmβmhγm

λm(λm + γm)(λh + αh + μd)
.

Using our estimated parameters, we obtain R0 = 2.4 for Bandiagara, Mali. Now
assume that a proportion p of the human population is protected by SP treatment
at the beginning of the season. In this case, the proportion of the population that is
susceptible to infection is reduced by (1 − p). Then the reproductive number under
SP protection, RSP

0 , is given by

RSP
0 =

√
βhmβmhγm

λm(λm + γm)(λh + αh + μd)
(1 − p) = 2.4

√
1 − p.

We note that the malaria model (1)–(2) may exhibit backward bifurcation for suf-
ficiently large disease-induced death rates (Chitnis et al. 2006). However, for our
autonomous system with low disease-induced death rate estimated from field survey
data in Bandiagara, Mali (see Table 1), we verified that the malaria epidemic will not
grow at the beginning of the season if RSP

0 < 1, consistent with findings in Anderson
and May (1991), Chitnis et al. (2006). This implies that the minimum proportion of
population that must be protected by SP, pmin, in order to control the growth of the
epidemic at the beginning of the season in Bandiagara is pmin = 0.82, i.e., at least
82 % population needs to be protected by SP.

While this minimum 82 % SP-protection ensures that the epidemic does not grow
at the beginning of the season, with this strategy epidemics later in the season can-
not be avoided, since the SP-protected individuals lose their protection as time pro-
gresses. To study long-term protection by SP, a more relevant measure is the effec-
tive reproductive number, RSP

e (t), which is defined as the average number of infec-
tious individuals resulting from a single infective introduced at time t into the pop-
ulation, given the susceptible fraction at that time (Farrington and Whitaker 2003;
Cintron-Arias et al. 2009). For our model, the effective reproductive number is given
by (Cintron-Arias et al. 2009):

RSP
e (t) =

√
βhmβmhγm

λm(λm + γm)(λh + αh + μd)
sh(t)sm(t).
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Fig. 6 Effective reproductive
number in Bandiagara, Mali,
with 84 %, 92 %, and 100 %
SP-protection level at the
beginning of the season

Figure 6 shows the effective reproductive number in Bandiagara, Mali, with initial
SP-protection levels of 84 %, 92 %, and 100 %. The figure shows that although the
reproductive number at the beginning of the season is less than one, the effective
reproductive number eventually increases to greater than one due to the loss of SP-
protection. As expected, the higher the level of SP-protection at the beginning of the
season, the longer the delay for the effective reproductive number to exceed one.

3.5 Sensitivity Analysis

We examined the sensitivity of our parameter estimates to changes in the assumed
values of four parameters obtained from the literature: the human and mosquito birth
rates; the recovery rate; and the rate of immunity loss (see Table 1). Fixing the number
of delay compartments at n = 5, we either increased or reduced each known param-
eter by 10 %, and reran the analysis obtaining new values for the fitted parameters.
On average, this yielded less than a 1 percent change in the best-fit parameter values
(mean absolute value: 0.66 %); the largest change we observed was a 4.8 % change
in βhm, when αh was increased 10 %. We repeated this procedure using a 25 % in-
crease or reduction in each of the known parameters. Here we found, on average,
a 8.6 % magnitude change in the best-fit parameter values. This indicates that the
fitted parameters are very robust to changes in the assumed parameter values.

One of our most important quantitative conclusions is that n = 5 compartments
best describe the duration of drug protection. To investigate the sensitivity of this
result, we repeated the analysis above, for 10 % changes in the known parameter
values, at n = 3,4,5,6, and 7. Figure 7 shows the Akaike information criteria (AICc)
for the resulting best fits, versus n. We see that n = 5 provides the best fit in almost
every case, although in several cases n = 6 also provides an excellent fit to the data.
Our conclusion that the duration of SP protection is best fit by 5 delay compartments
is thus quite robust to changes of ±10 % in the parameters from the literature.

Finally, we wished to investigate the sensitivity of our conclusions regarding the
duration of drug protection, that is, the rate of loss κ . In this case, we allowed the
same four parameters to vary simultaneously. In brief, we drew four random values
for these parameters, uniformly distributed between 90 % and 110 % of the assumed
value in Table 1. We then fit the model to the data fixing n = 5. We repeated this
procedure 100 times. A histogram of the resulting best-fit values of κ is provided
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Fig. 7 The Akaike information
criteria for the best-fit model
versus the number of delay
compartments, n. Each of the
indicated parameters was either
increased or decreased by 10 %
(see legend). The conclusion
that n = 5 yields the best fit to
the data is robust to 10 %
changes

Fig. 8 Histogram of the best-fit
values of the parameter κ , when
parameter values from the
literature were varied by ±10 %.
See text for details

in Fig. 8. We see that the values of κ are very tightly distributed around the best-
fit value (0.1318) reported in Table 2. Overall the mean value obtained was κ =
0.1316 ± 3.5 × 10−4. We conclude that our quantitative estimate for κ is very robust
to changes in the assumed parameters.

4 Discussion

Sulfadoxine-pyrimethamine (SP) is one of the most widely used antimalarial treat-
ments world-wide. Since a single dose of SP also provides protection against
infection, SP has also been considered prophylactically (Coulibaly et al. 2002;
World Health Organization 2010). In this paper, we describe a novel system of or-
dinary differential equations which allows us to infer the time distribution of SP pro-
tection from drug-trial data.
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Applying our method to a study of prophylactic SP in children and young adults
in Bandiagara, Mali (Coulibaly et al. 2002), we find that, on average, SP delayed
infection by malaria in this cohort for 37.9 days, consistent with the estimate in the
survey study (Coulibaly et al. 2002). We also demonstrate, however, that the duration
of SP protection is not well described by an exponential distribution, and in fact has
a much narrower dispersal about the mean; the best-fit standard deviation predicted
by our model was only 17.0 days, as opposed to 41.8 days for the exponential model
(see Fig. 5). This finding has implications for further efforts to model SP use, or for
investigations of the optimal timing of prophylactic SP, as described in Dembele et al.
(2010). Our data fitting suggests that a one-compartment model for SP protection is
not adequate, while a linear chain approximation, yielding a gamma distribution, pro-
vides a more accurate description of the duration over which SP retains its protective
effect.

Although the parameter estimates of Dembele et al. (2010) suggest that both
mosquito and human populations were close to demographic equilibrium for the 168-
day study, it is of course likely that the mosquito population density per human may
change somewhat over the course of the rainy season. A field survey study (Sogoba
et al. 2007) conducted in Bancoumana, Mali, shows that during the rainy season, the
mosquito density can vary between 5 to 10 mosquitoes per household. With an aver-
age of 12 people per household in Bandiagara (De Groote et al. 2003), the mosquito
density per human might vary between 0.4 to 0.8 during the study period. This gives
bounds on the possible variation in the parameter βmh, suggesting that although βmh

is not, in reality, constant, the range between its minimum and maximum values is at
most two-fold. The literature surrounding seasonal variations in malaria transmission
is well developed, and we refer the interested reader to Chitnis et al. (2012), Lou and
Zhao (2010), Griffin et al. (2010) and references therein.

Another limitation of our approach is the simplicity of the population-wide
model, which is necessary for meaningful data fitting. Since malaria has an in-
cubation delay, in the infected human, of about 2 weeks (Filipe et al. 2007;
Maire et al. 2006), we expected that incorporating this delay would improve data
fitting. In the supplementary material, however, we demonstrate that the inclusion of
exposed classes in the population-wide model, and in each of the study groups, did
not significantly improve model fits to the data, nor did it change our best estimate
of n = 5. Including an exposed human class, however, did reduce our estimate of the
duration of SP protection from about 38 to 31 days (see supplementary material for
details). Since the survey data quantify the delay in the incidence of malaria episodes
due to SP treatment, as compared to an untreated group, we hypothesize that data-
fitting is quite robust to changes in the structure of the model preceding the infectious
compartments.

As described in Sect. 3, model-fitting consistently predicted that the initial fraction
of infected humans, ih(0), was close to zero in the general population, while the
initial fraction of humans in the recovered state was close to 20 %. This result was
surprising, since Plasmodium falciparum was detected in the blood of roughly 20 %
of the control group at the start of the study. This result could be an artifact of the
simplified SIR model we used, which effectively assumes that all infected individuals
are simultaneously infectious and symptomatic. Another possible factor here is SP
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treatment availability, since recovery under treatment is rapid, of order 4 days (Bell
et al. 2008). Although we assumed that SP treatment was not widely available to the
general population, the model fit might be improved by including an “infected and
under treatment” compartment in the population-wide model. A further possibility is
transmission-blocking immunity (Arino et al. 2012), which is more common in the
adult population. These factors suggest directions for future work, although we again
note that the study-group results are fairly robust to changes in the population-wide
model.

We estimate the monthly entomological inoculation rate for Bandiagara to be 3.1,
consistent with an estimate of 2.8 from a survey study in Sudan Savana, Mali (Sogoba
et al. 2007). However, we note that EIR values may vary widely from place to place
(Smith et al. 2007, 2005a; Shaukat et al. 2010; Kelly-Hope and Mckenzie 2009) and
also from season to season (Drakeley et al. 2003). For example, during the peak trans-
mission period of September, the monthly EIR in Bandiagara town can reach up to
4 (Coulibaly et al. 2002). Similarly, the basic reproductive number for malaria varies
widely (Smith et al. 2007); our estimate of 2.4 is consistent with previous studies
(Aguas et al. 2008; Ruan et al. 2008). Although a treatment rate of 82 % would re-
duce R0 below one at the beginning of the season, Fig. 6 demonstrates that extremely
high rate and high frequency of treatment would be necessary to maintain this level of
control of Re throughout a single rainy season. The investigation of the optimal use
of limited SP in reducing the overall impact of malaria during the season is a clear
avenue for future work (see Dembele et al. 2010). Finally, the model we develop
here involves two study groups (treated and untreated), as well as a population-wide
model, linked by a common population of infected mosquitoes. This approach could
be useful more generally for the analysis of prophylactic drug trials for malaria, or
other vector-borne diseases.
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